23 Effective Ways To Reduce Brain Inflammation

Brain inflammation affected my health for many years.

In 2010, I suffered two separate concussions, and inflammation of the brain was one of the unfortunate results of these concussions (1-6). 

At that same time, I was living in a water-damaged building. 

The toxic mold growing in that building further increased the inflammation in my nervous system, particularly my brain (7-12).

My health deteriorated very quickly during that time, and my cognitive performance and mental well-being took a huge hit.

Thankfully, I recovered from these insults, and I accomplished this by taking matters into my own hands.

Lowering neuroinflammation was one part of my strategy.

This article gives you the 23 best natural ways to reduce brain inflammation. 

But before I share these proven strategies, let’s first define neuroinflammation and explore the downsides of chronic brain inflammation in more detail.

25-proven-effective-best-natural-ways-how-to-effectively-reduce-prevent-stop-decreases-lower-brain-head-inflammation-naturally-helps-fast-fastest-way-depression-covid-neuroinflammation-mental-health-supplements-vitamins-remedies-foods-diet-eat-activi

What Is Neuroinflammation and How Is It Linked To Brain Function and Mental Health?

Inflammation is a protective process of the body. Short-term inflammation can be very beneficial at first (20-23).

A scientific study from 2017 defines neuroinflammation as “the activation of the brain's innate immune system in response to an inflammatory challenge. It is characterized by a host of cellular and molecular changes within the brain.” (13).

There are many different causes of neuroinflammation (14-19).

For example, inflammation can be the result of exposure to a toxic compound. 

But pathogens and dead cells also cause inflammation.

In the short term, inflammation can help the healing process. But when it becomes excessive and chronic, it becomes counterproductive. 

Chronic inflammation can last months or even years if it’s not dealt with. And not only can that impact your liver or lungs, but it can also significantly impact your brain and nervous system.

An inflamed nervous system is called neuroinflammation. As a result, cells release “cytokines,” which help the immune system coordinate. 

These cytokines then affect physiological processes in your cells, alter hormonal systems in the body, change pain sensations, and interfere with the performance of your nervous system.

Here’s why you should reduce inflammation in your brain and not let it linger for too long:

  • It makes you more sensitive to pain and increases the risk of chronic pain: Research over the past decade has increasingly shown that neuroinflammation plays a significant role in the development of some types of chronic pain. Cytokines and chemokines are continually produced, promoting chronic pain throughout the body. The brain and spinal cord are very much involved in this process. Depending on the statistics, 20-45% of people have chronic pain at any moment. Chronic pain severely affects your quality of life and wellbeing (24-35).

  • It impedes basic brain physiology: Neuroinflammation plays a direct role in cognitive impairment, cognitive decline and brain conditions such as Alzheimer’s disease. In fact, research shows that the brain may lose its neuroplasticity under excess neuroinflammation. You may also end up with synaptic and neuron loss due to excessive brain inflammation (36-42).

  • It increases overall disease risk: Neuroinflammation doesn’t just affect your brain. For example, high blood pressure (which plays a significant role in heart disease), diabetes, and metabolic syndrome are all linked to nervous system inflammation. There’s also a link between obesity and having an inflamed brain, and some theories believe that brain inflammation is partially responsible for the development of obesity (56-61). 

Hopefully, it’s clear to you now that lowering inflammation in your brain is important.

Continue reading to learn how to decrease your brain inflammation naturally.

Click here to subscribe

The Best Lifestyle Habits, Therapies and Practices To Naturally Reduce Inflammation in the Brain

1. Deep Sleep (and Melatonin)

Melatonin is the master sleep hormone and the “hormone of darkness”. 

It has potent anti-neuroinflammatory effects (62-70).

The pineal gland in your brain synthesizes most of your melatonin, and it’s created and released when your eyes are no longer exposed to blue and green light.

During the day, the sun emits blue and green light telling your body it’s daytime. From an evolutionary perspective, sunlight was your ancestors' only exposure to blue and green light. The absence of that light at night made their body produce and release melatonin.

Our bodies expect the same today, except we’re now constantly bombarded with blue and green lights from all of our devices right up until bedtime.

One way to manage this is by taking extra melatonin as a supplement.

Supplementing with melatonin has been shown to lower levels of inflammatory markers in the body and brain. 

Researchers have found that melatonin influences inflammation and cytokine levels such as tumor necrosis factor (TNF), Interleukin-1, and Interleukin-6 (65).

Supplementing with melatonin is considered very safe.

For the best results, however, you should get blue light blocking glasses and wear them in the evening to help your body naturally create and release more melatonin.

Blue light blocking glasses prevent blue and green light from reaching your eyes. As a result, your melatonin levels will increase if you wear these glasses in the evening.

Melatonin levels also go down with age, so you might benefit from taking a melatonin supplement at night if you're older. 

Evidence shows such melatonin supplements can dramatically lower chronic brain inflammation. Melatonin is also cytoprotective and neuroprotective, keeping your cells and nervous system healthy (66).

From a broader perspective, improving sleep quality and getting deep sleep is also essential if you want to lower neuroinflammation (71-74). 

Research shows that poor sleep leads to higher levels of inflammatory cytokines.

And for people with a traumatic brain injury, poor sleep is associated with higher levels of IL-10, which is a cytokine (74).

Researchers suggest that if you can improve sleep quality, inflammatory cytokine levels will decrease (74).

Sleep deprivation also feeds neuroinflammation, which can then increase your risk of neurodegenerative diseases (71).

C-reactive protein is one of the essential inflammatory biomarkers, and sleep deprivation is associated with higher C-reactive protein levels (72).

As a consequence of sleep deprivation and related neuroinflammation, you can then develop learning and memory impairments (74). 

So, for optimal brain function and mental health, it’s imperative to prioritize sleep quality and get the deepest, most restful sleep possible.

I personally used to have very poor sleep and it was one of the main factors that contributed to my poor cognitive function.

If you’re having trouble with sleep, try this sleep supplement. It contains magnesium and other natural compounds that I’ve used over the years to promote deeper and more restful sleep.

I also work with my clients so that they can naturally produce more melatonin and maximize the quality of their sleep without so many supplements. We have a free online workshop that talks about how you can work with us. You can register for the workshop here.

 

2. Sunlight (And Vitamin D)

Sunlight lowers general inflammation and neuroinflammation through a number of different mechanisms (75-79).

Vitamin D is one mechanism. 

Research shows that Vitamin D supplementation protects dopaminergic neurons and prevents “microglia” from activating an inflammatory response.

Animals with Parkinson's disease experience decreased brain inflammation when they are given Vitamin D. Researchers noticed that there is an upregulation of anti-inflammatory processes in the brain (75). 

In another study, Vitamin D impeded neuroinflammation in the hippocampus, which is an important emotional and memory center within the brain (76). 

Vitamin D also lowers oxidative stress in the brain, improves mitochondrial function, and supports the choline system. 

Some degenerative changes in the brain have also been shown to be reversed with vitamin D supplementation.

Sensible sunlight exposure is the healthiest way to increase vitamin D levels. But make sure to get out of the sun before you get a sunburn.

If you cannot get good sunlight exposure during the winter and your Vitamin D levels are low, then you should supplement with Vitamin D3. 

Sunlight exposure is better than supplements, though. 

Recent research suggests that pathways other than vitamin D creation help people avoid autoimmune diseases such as multiple sclerosis (80).

There’s also a link between decreased sunlight exposure and an increased risk of cognitive decline (81). 

So you should definitely strive to use sensible sunlight exposure to increase your Vitamin D levels and lower your neuroinflammation.

I personally get sunlight every single day during the spring and summer months. 

It’s important to get the sunlight in your eyes to trigger the release of neurotransmitters.

So make sure you don’t wear contacts, glasses or sunglasses when you go outside.

It’s especially important to do this in the morning because it sets your circadian rhythm.

At the very least, you should take a Vitamin D supplement if you’re deficient. I take some Vitamin D3 in supplement form, depending on my levels.

It's important to test and monitor your Vitamin D levels before and after supplementing with it.

 

3. Exercise and Movement

There’s a strong link between exercise and inflammation in the brain (82-90).

Exercise counters the overactivation of the microglia, which are the repairers and maintainers of the nervous system. As a result, exercise can improve brain function and counter neurodegeneration (90). 

Exercise also reduces the risk of developing a neurological disease. The risk of Alzheimer’s disease, Parkinson’s disease, depression, autism, and stroke all go down when you exercise regularly (83, 86, 88, 90).

Conditions such as amyotrophic lateral sclerosis, epilepsy, and anxiety disorders may also benefit from exercise’s reduction of neuroinflammation.

Part of the reason exercise impedes cognitive decline and improves cognition is by countering excess neuroinflammation (88).

Exercise also leads to improvement in “neurotrophic factors'' such as brain-derived neurotrophic factor (BDNF). BDNF helps create new brain cells and repairs existing ones (89). 

Not all studies agree what type of exercise is best, though.

Some studies claim that endurance exercise specifically is the best for brain function, especially with age.

For example, one group of researchers said that “endurance exercise has specifically been demonstrated to have a marked impact on neuroimmune communications, particularly those involving microglia, the resident macrophages of the CNS parenchyma, as well as microglia-astrocyte interactions in rodents” (84).

Those physiological processes are strongly tied to inflammation levels in the nervous system (85).

Exercise has also been shown to protect against cognitive decline and dementia, promote neurogenesis, help reverse brain damage, and promote the regeneration of myelin.

So not surprisingly, exercise is recommended by many experts and it’s often their number one piece of advice for optimal brain health.

My usual advice is to find a sport or exercise routine that you enjoy, so that you’ll stick with it consistently.

Click here to subscribe

4. Low-Level Laser/Light Therapy (LLLT)

Low-Level Laser/Light Therapy (LLLT), also known as photobiomodulation, is growing in popularity every year. 

More than 7,000 published studies exist and more than 85% of them demonstrate positive health effects (91).

LLLT works by exposing your body to red and near-infrared light.

The effects are often spectacular. 

Brain damage, neuroinflammation, and microglia activation are all impeded due to light therapy.

In a study summarizing 27 earlier studies, researchers found that LLLT decreases neuroinflammation in people with many different brain and mental conditions (92).

These conditions include neurodegenerative conditions, epilepsy, depression, spinal cord injuries, chronic pain, and traumatic brain injuries. It also reduces brain inflammation and cognitive decline due to general aging. 

Studies also show that LLLT is beneficial to animals after they have a stroke (93).

Other animal studies show promising results for autoimmune diseases affecting the nervous system, such as multiple sclerosis, and human studies are also very promising (94-95).

LLLT is also promising for other conditions with a neuroinflammatory component (96-97).

I previously wrote about my experience with low-level laser therapy here.

I use this device and shine the red and infrared light on my forehead for 5 minutes every day. I also shine it on other parts of my head and on my entire body, including on my thyroid, thymus gland and gut. I experience incredible benefits from doing this. 

When I’m traveling, I take this smaller and more convenient device with me and shine it on my forehead. 

I’ve also been using the Vielight Neuro Duo, which is a transcranial-intranasal headset with 810 nm of near infrared light. It penetrates deeper into brain tissue and is absorbed better by the central nervous system. If you decide to try a Vielight device, you can use the coupon code JORDANFALLIS for a 10% discount.

Before trying LLLT, I highly recommend reading my full article about it first.

 

5. Managing Stress and Dealing with Trauma

Trauma is far more impactful to overall health than many people realize. 

I had to work through my trauma in order to fix my chronic health issues.

This is because neuroinflammation is one of the main characteristics of trauma (125-131). 

There’s persistent low-grade inflammation in people who have post-traumatic stress disorder (PTSD). 

As a result, an increased risk of autoimmune disease exists, and aging also speeds up (131).

Increasingly, there is a link between PTSD, immune system dysfunction and inflammation (125-127).

There’s many different ways to deal with trauma and overcome it. 

But here are some suggestions: 

For other options and strategies, read my other article about overcoming trauma and PTSD without medication.

Then there’s chronic stress

There’s also a link between chronic stress, microglia activation and neuroinflammation (132).

The inflammation caused by chronic stress has been shown to cause alterations in the metabolism of neurotransmitters in the brain (133).

This can result in abnormal neurotransmitter levels, increasing your risk of depression, anxiety, fatigue, and pain. (133; 134).

Read my articles about lowering the stress hormone cortisol and the best supplements to reduce stress and anxiety to learn more about how you can manage your stress.

 

6. Normalize Your Bodyweight

Not surprisingly, your overall health is best if you’re relatively lean. 

Being overweight comes with a number of health problems, including hypertension, diabetes, heart problems.

But being overweight also increases your risk of developing poor brain function and mental health problems (140-144). 

The consequences of obesity are even worse. 

There’s a strong link between obesity and neuroinflammation (145-151).

How?

The inflammation caused by obesity leads to inflammation in the brain, particularly the hypothalamus (145, 148).

The hypothalamus plays a significant role in hormonal health, emotional regulation, and your body’s metabolism.

One result of neuroinflammation in the hypothalamus is microglial proliferation.

This results in a vicious cycle of increasingly more and more neuroinflammation.

Eventually, the hypothalamus undergoes neurodegeneration (145). 

The result is declining cognitive function, cognitive impairment, and poor emotional control.

You’ll also become more prone to overeating, which then makes the problem even worse.

It was recently demonstrated that other brain structures also get inflamed due to obesity. These structures include the cortex (your brain’s CEO), the amygdala (its emotional center), and the brainstem (for very basal bodily functions) (147). 

Neuroinflammation then affects your mood and reproductive function (149).

Even in childhood, there’s a link between obesity and inflammation of the nervous system (146)

Visceral fat, between your organs, is the most damaging type of fat. The neuroinflammation that results from this type of fat damages DNA and causes oxidative stress in both the brain and peripheral tissues (149, 151).

So what’s the solution?

It’s very likely that you’ll lose weight if you stick to eating the foods included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health

Implementing many of the other health strategies in my other articles can help as well.

 

7. Grounding

Grounding and earthing have become popular in the natural health and wellness space. 

With grounding, you allow your body to remove a positive charge to an object that conducts electricity. 

Earthing does the same, but allegedly supplies your body with the negative charge from the earth as well. 

The easiest way to earth is to put your bare feet on sand or grass.

It turns out that grounding and earthing lower your overall inflammation levels (223-226). 

That connection is interesting because, lately, scientists have also found a link between your body’s general inflammation levels and neuroinflammation (227-231).

The systemic inflammation-lowering effects of grounding will likely reduce inflammation in your brain as well.

For the best results, spend 15 minutes daily with your bare feet on the earth. You can combine earthing with sunlight for even better results.

Click here to subscribe

The Best Foods To Naturally Reduce Inflammation in the Brain

8. Green Tea (EGCG)

Green tea contains the antioxidant epigallocatechin gallate (EGCG)

It’s neuroprotective, lowers neuroinflammation, and counters aging (135-139).

EGCG is praiseworthy because it may counter brain disorders such as Alzheimer’s disease. It protects the brain by inhibiting the activation of microglia and reducing cerebral inflammation in Alzheimer’s disease. It also prevents neurotoxicity (135-137). 

Through its positive effect on inflammation and immune system regulation, EGCG may impede nervous system conditions such as multiple sclerosis (138).

Lastly, EGCG counters the neuroinflammatory effects of obesity. It inhibits pro-inflammatory cytokines such as TNF-alpha, Interleukin-6 and Interleukin-1-Beta (139). 

To get sufficient EGCG into your brain, you would need to drink a lot of green tea every day. 

For that reason, I prefer supplementing with EGCG

The Optimal Antiox supplement contains an optimal dose of EGCG extract. It combines EGCG with vitamin C to make it more absorbable. This removes the risk of liver damage that you may experience when you supplement with large doses of EGCG over a long period of time.

 

9. Sulforaphane (From Broccoli)

Your Brussels sprouts contain an almost-magical natural plant compound called “sulforaphane” (158-163). 

Sulforaphane is a phytochemical found in cruciferous vegetables.

Broccoli, kale, and cabbage are some other excellent sources of sulforaphane. 

Sulforaphane is known to promote autophagy in the brain and make the blood-brain barrier less leaky.

But it’s also neuroprotective and lowers neuroinflammation (158, 161). 

As a result, the compound decreases the risk for nervous system conditions such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, epilepsy, psychiatric disorders, and stroke (158).

Sulforaphane prevents cell death under stress and keeps your memory sharp. It also counteracts the brain inflammation associated with depression (159-161).

The best way to ingest sufficient sulforaphane is to eat an adequate amount of cruciferous vegetables. 

You can also take a supplement with it to ingest higher dosages.

If you decide to take it in supplement form, make sure you get the "myrosinase-activated" form.

Myrosinase is the enzyme in broccoli that helps metabolize sulforaphane.

I once bought a supplement that didn't contain myrosinase and had to return it, and then ended up buying another one instead.

 

10. Coffee (Caffeine)

Coffee and caffeine are excellent for brain health.  

There is lots of research showing they are very healthy and can lower the risk of developing neurodegenerative diseases

But they can be a double-edged sword.

They have enormous benefits, but potential downsides as well (such as poor sleep).

For neuroinflammation, though, coffee and caffeine shine (164-171). 

Coffee gives you the best anti-inflammatory results, and taking pure caffeine is not as effective. As a result, coffee can lower your risk of developing a neurodegenerative disease, such as Alzheimer’s disease and Huntington’s disease (164-165).

However, people still respond differently to coffee and caffeine, so observing how you react is best (169). 

A golden mean between excess and abstinence - consuming one or two cups of coffee daily - is probably best (171).

Coffee and caffeine can disrupt sleep though, so make sure you don’t drink it in the evening close to bed.  

Some people like me are really sensitive and have to stop drinking it very early in the day so that it doesn’t disrupt their sleep. I would have my last cup sometime between 10 in the morning and noon. Any later than that and it disrupted my sleep. 

It’s also a good idea to try to consume the whole coffee fruit, instead of just coffee or pure caffeine. 

Traditionally, the coffee bean is extracted from the coffee fruit for roasting. And the surrounding fruit is discarded.  

But that’s a problem because the coffee fruit contains several healthy compounds not found in coffee beans themselves.

And researchers have found that consuming whole coffee fruit concentrate can significantly enhance cognitive functioning.  

That’s why I included coffee fruit in the Optimal Brain supplement.

 

11. Cacao

Coffee and cacao are a match made in heaven. 

They’re also a match from a neuroinflammation standpoint (172-176).

First, cacao is neuroprotective, increases blood flow in the brain, and supports cognitive function (172, 174).

Cacao also has powerful antioxidant properties. Cacao contains compounds called “flavonoids”, which reduce neuroinflammation and improve memory and learning (173).

Cacao consumption has also been shown to counter neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease (173). 

Cacao consumption also protects the peripheral nervous system (176).

Cacao can also reduce pain, which originates mainly in both parts of the nervous system. A potential link exists between its pain-inhibiting effects and its reduction in neuroinflammation (175).

Click here to subscribe

12. Turmeric (Curcumin)

Turmeric and its most crucial biological compound, curcumin, have taken the natural health and wellness space by storm (177-183). 

Turmeric has robust anti-systemic inflammation and anti-neuroinflammation effects (177-182).

The most active ingredient, curcumin, counters neuroinflammation and protects memory function (177, 180).

Other mechanisms for the prevention of neurodegenerative diseases exist as well. 

For example, inflammatory mediators such as TNF-alpha, nitric oxide, and IL-1-Beta are inhibited by curcumin (178). 

Mitochondrial function is also supported by turmeric (178). 

And the active ingredient curcumin is uniquely promising for countering neuroinflammation (178, 181)

Even for traumatic brain injury, curcumin helps (179).

But how should you consume turmeric or curcumin

For most people, a high-quality curcumin supplement is by far the best. 

Turmeric and curcumin are included in the Optimal Antiox supplement. 

 

13. Pomegranate

Pomegranates have become popular in the natural health and wellness space because of their high nutrient content and unique benefits (213).

The fruit has a solid anti-neuroinflammatory effect, although more human research is needed (214-215). 

As a result, pomegranate may have promising effects in countering Parkinson’s disease and Alzheimer’s disease.

Pomegranate is also famous for its ability to promote blood flow and keep your blood vessels supple (216). 

Its effects of reducing inflammation, and improving blood vessels or endothelial function, are likely interrelated. 

Drinking pomegranate juice with a meal that contains fiber, such as vegetables, is a great way to integrate it into your diet.

 

14. Ginger

Ginger is a spice that has fascinating anti-neuroinflammation properties. 

Compounds such as “10-gingerol” and “6-Shogaol“ are responsible for that effect (207-208). 

Fresh ginger has the best effects, so definitely include it in your cooking. 

Want to learn more? 

Download the brain-supportive cooking ingredients I recommend for optimal brain health and for lowering neuroinflammation.

Don’t want to eat ginger?

A ginger extract can also lower neuroinflammation (209-211).

 

15. Garlic

Who doesn’t love garlic? If you don't, you can take an aged garlic extract supplement.

It turns out that garlic significantly reduced general inflammation and neuroinflammation (194).

First of all, garlic inhibits microglia activation (190). 

As a result, garlic can protect memory against stress and neurodegenerative influences (190-192).

Raw garlic tends to have the most promising health-promoting effects, including inhibiting neuroinflammation (193).

Due to the pungent smell, you may want to supplement with aged garlic extract and cook with regular garlic.

Click here to subscribe

The Best Nutrients, Herbs and Supplements To Naturally Reduce Inflammation in the Brain

16. Vitamin B6

Vitamin B6 is an important nutrient for normal brain development and for keeping the nervous system healthy.

It turns out that vitamin B6 is essential for keeping inflammation in check and your mitochondria healthy (100-104).

If you have excess inflammation, and neuroinflammation, your vitamin B6 levels are more likely to be low (103; 104).

In animal studies, vitamin B6 protects against toxicity in the brain, and inflammation plays a significant role in that process.

Fish, chicken, beef, and eggs are all excellent sources of vitamin B6. Various fruits and vegetables are also excellent sources. Potatoes, avocados, and chickpeas are also packed with vitamin B6 (98-99).

I hold vitamin B6 very close to my heart because supplementing with it was essential when I used and came off psychiatric medication.

Nowadays, I include vitamin B6 in my Optimal Zinc supplement. That supplement can be helpful for neuroinflammation.

Why?

Because the zinc within the supplement can also lower neuroinflammation and systemic inflammation (105-109).

Several other ingredients in Optimal Zinc can help keep your neuroinflammation levels down, which can then improve your mental health.

 

17. Omega-3 Fatty Acids

The last few decades have seen enormous research on omega-3 fatty acids and health, including brain health. 

Without a doubt, omega 3 fats are very beneficial for promoting optimal brain health (110-115). 

These fats improve well-being, increase blood flow to the brain, counter neurodegeneration, and enhance learning and memory. As a result, brain disorders and cognitive decline can be reduced and prevented.

Omega-3 fats have these positive effects because they greatly reduce neuroinflammation (118-124). 

The long-chain omega-3 fatty acids are eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).

EPA is known to boost mood, and DHA helps maintain brain structure.

Under high stress, EPA and DHA counter excess brain inflammation, reduce cell death and help create new brain cells (124).

In Alzheimer’s disease, EPA and DHA lower brain inflammation (118). 

These omega-3 fats also regulate microglia, and they have anti-inflammatory and neuroprotective effects through that mechanism (119-120).

As a result, omega-3 fatty acids also play a significant preventative role in many potential brain diseases, such as Alzheimer’s disease and depression (118, 121-122). 

Fatty cold-water fish and shellfish are the best sources of high-quality omega-3 fatty acids (116; 117). This includes:

  • Wild salmon

  • Mackerel

  • Herring

  • Anchovies

  • Cod

  • Sardines

  • Mussels

  • Oysters

These foods are included in my Free Grocery Shopping Guide for Optimal Brain Health.

Algae are a decent source if you’re vegetarian or vegan.

 

18. Ginkgo Biloba

Ginkgo Biloba is a Chinese tree that has been used in traditional medicine as a natural remedy for thousands of years (152).

Studies show that Ginkgo Biloba has anti-inflammatory effects in the brain (153-157).

Ginkgo Biloba inhibits microglial activation and neuroinflammation (153).

By countering neuroinflammation, Ginkgo Biloba protects against mild chronic stress and depression (154).

The plant additionally works as an antioxidant (155).

Ginkgo Biloba can also protect the hypothalamus against damage and improve memory (156-157).

My Optimal Brain supplement contains Ginkgo Biloba, along with other premium ingredients that protect the brain and enhance cognition.

 

19. Ginseng

Ginseng is a root and natural remedy that has adaptogenic properties, meaning it reduces stress and normalizes bodily functions after stress (184; 185). 

Ginseng has been shown to modulate neuroinflammation, act as an antioxidant, and protect neurons from damage  (186).

Ginseng inhibits microglia activity, which means inflammation in the nervous system is less likely to spiral out of control (187).

As a result, ginseng may have benefits for health conditions interrelated with neuroinflammation, such as Alzheimer’s disease and stroke (188). 

It’s also been shown to protect against the deterioration of cognitive function and promotes healthy memory (189).

Ginseng is one of my favourite herbal supplements for brain function and depression.

The best form of ginseng that I have personally benefited the most from is American Ginseng (Panax quinquefolius).

Years ago, I found that it improved my memory and cleared brain fog quite quickly. But I no longer need to take it.

Click here to subscribe
 

20. N-Acetyl-Cysteine (NAC)

N-acetyl-cysteine (NAC) is a slightly altered version of the amino acid “cysteine” (195). 

It’s also the precursor to glutathione, your body’s master antioxidant.  

It has potent antioxidant effects

But it also has anti-inflammatory effects and anti-neuroinflammatory properties (196; 197)

For instance, with alcohol poisoning, NAC has potent effects in preventing neurotoxicity and neuroinflammation (198).

The same is true for other highly stressful situations, such as chemotherapy for cancer (199).

NAC can also help prevent depression by lowering brain inflammation (200). 

If you are interested in trying NAC, it is included in the Optimal Antiox supplement

But make sure you read this previous article to learn how I used NAC to optimize my brain function and mental health.

 

21. Lithium Orotate

Lithium is a mineral and it’s been used for mental health promotion for decades (201, 202). 

Lithium orotate can be taken as a supplement, and it crosses the blood-brain barrier and affects brain function and mental health (204). 

In the nervous system, lithium is neuroprotective, lowers inflammation, promotes autophagy, acts as an antioxidant, and improves mitochondrial function (203).

As a result, lithium can help counter the development of neurodegenerative diseases (205).

You’ll want to take lithium orotate, and you’ll want to take a low dose. Lower dosages have fewer potential side effects (206).

If you take psychiatric medication, you may want to check out lithium orotate.

I used to take it. I don’t take it anymore because I don’t need it. But I remember it making me feel calm and stable. 

 

22. Cannabinoids

Cannabis contains “cannabinoids”. 

The psychoactive THC and relaxing CBD are two examples of such cannabinoids (217). 

Your body has its own endocannabinoid system. The cannabinoids you consume interact with that system.

It turns out that cannabinoids have anti-neuroinflammatory effects. 

CBD counters autoimmunity by lowering inflammation in the nervous system (218-219).

Other cannabinoids have anti-neuroinflammation effects as well (220-222). 

For the best results, take a full-spectrum cannabinoid supplement that contains CBD but minimal THC.

Check out this article for other ways to support your endocannabinoid system.

 

23. Bacopa Monnieri

Bacopa monnier is another adaptogen with neuroprotective and anti-neuroinflammation effects (232-236).

This is likely why bacopa can aid memory and learning and reduce the risk for neurodegenerative diseases such as Alzheimer’s disease

Other conditions of the central and peripheral nervous systems are positively affected by bacopa as well.

I like bacopa for lowering stress and anxiety, and I used it frequently in the past. So it’s a good option if you’re looking for something to reduce brain inflammation and relieve anxiety at the same time.  

Bacopa also enhances attention and learning, and helps your body create new synapses in the brain.

 

Enjoy This Article? You Might Also Like My FREE Food Guide for Optimal Brain and Mental Health!

Click here to subscribe

Live Optimally, 

Jordan Fallis 

Connect with me

References:

(1) https://pubmed.ncbi.nlm.nih.gov/32600167/ 

(2) https://pubmed.ncbi.nlm.nih.gov/33961674/ 

(3) https://pubmed.ncbi.nlm.nih.gov/33228537/ 

(4) https://pubmed.ncbi.nlm.nih.gov/34955170/ 

(5) https://pubmed.ncbi.nlm.nih.gov/35053845/ 

(6) https://pubmed.ncbi.nlm.nih.gov/35945692/ 

(7) https://pubmed.ncbi.nlm.nih.gov/31751617/ 

(8) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303478/ 

(9) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4444319/ 

(10) https://pubmed.ncbi.nlm.nih.gov/29752039/ 

(11) https://pubmed.ncbi.nlm.nih.gov/36040029/ 

(12) https://erj.ersjournals.com/content/21/2/317 

(13) https://pubmed.ncbi.nlm.nih.gov/24144733/ 

(14) https://pubmed.ncbi.nlm.nih.gov/30874626/ 

(15) https://pubmed.ncbi.nlm.nih.gov/24727365/ 

(16) https://pubmed.ncbi.nlm.nih.gov/20698820/ 

(17) https://pubmed.ncbi.nlm.nih.gov/23374717/ 

(18) https://pubmed.ncbi.nlm.nih.gov/36036436/ 

(19) https://pubmed.ncbi.nlm.nih.gov/25657582/ 

(20) https://pubmed.ncbi.nlm.nih.gov/29467962/ 

(21) https://pubmed.ncbi.nlm.nih.gov/34067872/ 

(22) https://pubmed.ncbi.nlm.nih.gov/29630225/ 

(23) https://pubmed.ncbi.nlm.nih.gov/17426506/ 

(24) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228377/ 

(25) https://pubmed.ncbi.nlm.nih.gov/34022418/ 

(26) https://pubmed.ncbi.nlm.nih.gov/29462012/ 

(27) https://pubmed.ncbi.nlm.nih.gov/24948120/ 

(28) https://pubmed.ncbi.nlm.nih.gov/36110505/ 

(29) https://pubmed.ncbi.nlm.nih.gov/10998702/ 

(30) https://pubmed.ncbi.nlm.nih.gov/33990113/ 

(31) https://pubmed.ncbi.nlm.nih.gov/20476853/ 

(32) https://pubmed.ncbi.nlm.nih.gov/22697274/ 

(33) https://pubmed.ncbi.nlm.nih.gov/20797916/ 

(34) https://pubmed.ncbi.nlm.nih.gov/31984290/ 

(35) https://pubmed.ncbi.nlm.nih.gov/26313056/ 

(36) https://pubmed.ncbi.nlm.nih.gov/30610927/ 

(37) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6297877/ 

(38) https://pubmed.ncbi.nlm.nih.gov/35234334/ 

(39) https://pubmed.ncbi.nlm.nih.gov/22311128/ 

(40) https://pubmed.ncbi.nlm.nih.gov/33556444/ 

(41) https://pubmed.ncbi.nlm.nih.gov/33589593/ 

(42) https://pubmed.ncbi.nlm.nih.gov/34015268/ 

(43) https://pubmed.ncbi.nlm.nih.gov/29589284/ 

(44) https://pubmed.ncbi.nlm.nih.gov/28623617/ 

(45) https://pubmed.ncbi.nlm.nih.gov/32208177/ 

(46) https://pubmed.ncbi.nlm.nih.gov/33068223/ 

(47) https://pubmed.ncbi.nlm.nih.gov/34585992// 

(48) https://pubmed.ncbi.nlm.nih.gov/17951027/ 

(49) https://pubmed.ncbi.nlm.nih.gov/29752710/ 

(50) https://pubmed.ncbi.nlm.nih.gov/23547920/ 

(51) https://pubmed.ncbi.nlm.nih.gov/30127639/ 

(52) https://pubmed.ncbi.nlm.nih.gov/35125427/ 

(53) https://pubmed.ncbi.nlm.nih.gov/33098761/ 

(54) https://pubmed.ncbi.nlm.nih.gov/31705510/ 

(55) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7430067/ 

(56) https://pubmed.ncbi.nlm.nih.gov/27166279/ 

(57) https://pubmed.ncbi.nlm.nih.gov/25149184/ 

(58) https://pubmed.ncbi.nlm.nih.gov/29974394/ 

(59) https://pubmed.ncbi.nlm.nih.gov/33025697/ 

(60) https://pubmed.ncbi.nlm.nih.gov/35422689/ 

(61) https://pubmed.ncbi.nlm.nih.gov/26783119/ 

(62) https://pubmed.ncbi.nlm.nih.gov/30521244/ 

(63) https://pubmed.ncbi.nlm.nih.gov/16219483/ 

(64) https://www.ncbi.nlm.nih.gov/books/NBK534823/ 

(65) https://pubmed.ncbi.nlm.nih.gov/33581247/ 

(66) https://pubmed.ncbi.nlm.nih.gov/35008730/ 

(67) https://pubmed.ncbi.nlm.nih.gov/34585328/ 

(68) https://pubmed.ncbi.nlm.nih.gov/32375205/ 

(69) https://pubmed.ncbi.nlm.nih.gov/29701146/ 

(70) ttpsh://pubmed.ncbi.nlm.nih.gov/34267535/ 

(71) https://pubmed.ncbi.nlm.nih.gov/34830412/ 

(72) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4666828/ 

(73) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3461115/ 

(74) https://pubmed.ncbi.nlm.nih.gov/35153739/ 

(75) https://pubmed.ncbi.nlm.nih.gov/27987058/ 

(76) https://pubmed.ncbi.nlm.nih.gov/28702935/ 

(77) https://pubmed.ncbi.nlm.nih.gov/34827621/ 

(78) https://pubmed.ncbi.nlm.nih.gov/33106919/ 

(79) https://pubmed.ncbi.nlm.nih.gov/32063570/ 

(80) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817192/

(81) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665728/ 

(82) https://pubmed.ncbi.nlm.nih.gov/31795607/ 

(83) https://pubmed.ncbi.nlm.nih.gov/31228000/ 

(84) https://pubmed.ncbi.nlm.nih.gov/36479905/ 

(85) https://pubmed.ncbi.nlm.nih.gov/36293516/ 

(86) https://pubmed.ncbi.nlm.nih.gov/34310976/ 

(87) https://pubmed.ncbi.nlm.nih.gov/20188719/ 

(88) https://pubmed.ncbi.nlm.nih.gov/35328666/ 

(89) https://pubmed.ncbi.nlm.nih.gov/25527485/ 

(90) https://pubmed.ncbi.nlm.nih.gov/31324021// 

(91) https://docs.google.com/spreadsheets/d/1ZKl5Me4XwPj4YgJCBes3VSCJjiVO4XI0tIR0rbMBj08/edit#gid=0 

(92) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9531128/ 

(93) https://pubmed.ncbi.nlm.nih.gov/33580734/ 

(94) https://pubmed.ncbi.nlm.nih.gov/26703077/ 

(95) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837843/ 

(96) https://jneuroinflammation.biomedcentral.com/articles/10.1186/1742-2094-9-219 

(97) https://www.nature.com/articles/s41598-022-14812-8 

(98) https://www.myfooddata.com/articles/foods-high-in-vitamin-B6.php 

(99) https://www.byrdie.com/vitamin-b6-foods-5184811 

(100) https://pubmed.ncbi.nlm.nih.gov/29477221/ 

(101) https://pubmed.ncbi.nlm.nih.gov/32967056/ 

(102) https://pubmed.ncbi.nlm.nih.gov/28879460/ 

(103) https://pubmed.ncbi.nlm.nih.gov/27593095/ 

(104) https://pubmed.ncbi.nlm.nih.gov/16277678// 

(105) https://pubmed.ncbi.nlm.nih.gov/35556196/ 

(106) https://pubmed.ncbi.nlm.nih.gov/30772740/ 

(107) https://pubmed.ncbi.nlm.nih.gov/33155397/ 

(108) https://pubmed.ncbi.nlm.nih.gov/33597269/ 

(109) https://pubmed.ncbi.nlm.nih.gov/25462582/ 

(110) https://pubmed.ncbi.nlm.nih.gov/30111738/ 

(111) https://pubmed.ncbi.nlm.nih.gov/23796946/ 

(112) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7468918/ 

(113) https://pubmed.ncbi.nlm.nih.gov/36381743 

(114) https://pubmed.ncbi.nlm.nih.gov/33607289/ 

(115) https://pubmed.ncbi.nlm.nih.gov/24470182/ 

(116) https://kilinava.com/health/major-sources-of-omega-3s-dha-and-epa/ 

(117) https://www.healthline.com/nutrition/12-omega-3-rich-foods 

(118) https://pubmed.ncbi.nlm.nih.gov/27633106// 

(119) https://pubmed.ncbi.nlm.nih.gov/29217656/ 

(120) https://pubmed.ncbi.nlm.nih.gov/29678169/ 

(121) https://pubmed.ncbi.nlm.nih.gov/34577816/ 

(122) https://pubmed.ncbi.nlm.nih.gov/32180741/ 

(123) https://pubmed.ncbi.nlm.nih.gov/15485592/ 

(124) https://pubmed.ncbi.nlm.nih.gov/34131267// 

(125) https://pubmed.ncbi.nlm.nih.gov/35625690/ 

(126) https://pubmed.ncbi.nlm.nih.gov/30653780/ 

(127) https://pubmed.ncbi.nlm.nih.gov/27635478/ 

(128) https://pubmed.ncbi.nlm.nih.gov/34456764/ 

(129) https://pubmed.ncbi.nlm.nih.gov/31932029/ 

(130) https://pubmed.ncbi.nlm.nih.gov/35625876/ 

(131) https://pubmed.ncbi.nlm.nih.gov/35477973/ 

(132) https://pubmed.ncbi.nlm.nih.gov/33587954/ 

(133) https://pubmed.ncbi.nlm.nih.gov/34055387/ 

(134) https://pubmed.ncbi.nlm.nih.gov/20573451/

(135) https://pubmed.ncbi.nlm.nih.gov/35327563/ 

(136) https://pubmed.ncbi.nlm.nih.gov/35409364/ 

(137) https://pubmed.ncbi.nlm.nih.gov/26643169/ 

(138) https://pubmed.ncbi.nlm.nih.gov/20140007/ 

(139) https://pubmed.ncbi.nlm.nih.gov/31614951/ 

(140) https://pubmed.ncbi.nlm.nih.gov/26627494/ 

(141) https://pubmed.ncbi.nlm.nih.gov/31113424/ 

(142) https://pubmed.ncbi.nlm.nih.gov/12737715/ 

(143) https://pubmed.ncbi.nlm.nih.gov/16617231/ 

(144) https://pubmed.ncbi.nlm.nih.gov/8615345/ 

(145) https://pubmed.ncbi.nlm.nih.gov/24727365/ 

(146) https://pubmed.ncbi.nlm.nih.gov/36009499/ 

(147) https://pubmed.ncbi.nlm.nih.gov/28318543/ 

(148) https://pubmed.ncbi.nlm.nih.gov/25582291/ 

(149) https://pubmed.ncbi.nlm.nih.gov/31513269/ 

(150) https://pubmed.ncbi.nlm.nih.gov/33025697/ 

(151) https://pubmed.ncbi.nlm.nih.gov/35872330/ 

(152) https://en.wikipedia.org/wiki/Ginkgo_biloba 

(153) https://pubmed.ncbi.nlm.nih.gov/29895492/ 

(154) https://pubmed.ncbi.nlm.nih.gov/35677735/ 

(155) https://pubmed.ncbi.nlm.nih.gov/32196446/ 

(156) https://pubmed.ncbi.nlm.nih.gov/36419341/ 

(157) https://pubmed.ncbi.nlm.nih.gov/28918573/ 

(158) https://pubmed.ncbi.nlm.nih.gov/30858063/ 

(159) https://pubmed.ncbi.nlm.nih.gov/31049133/ 

(160) https://pubmed.ncbi.nlm.nih.gov/21684138/ 

(161) https://pubmed.ncbi.nlm.nih.gov/30813369/ 

(162) https://pubmed.ncbi.nlm.nih.gov/27833054/ 

(163) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346151/ 

(164) https://pubmed.ncbi.nlm.nih.gov/36361750/ 

(165) https://pubmed.ncbi.nlm.nih.gov/28967799/ 

(166) https://pubmed.ncbi.nlm.nih.gov/28250576/ 

(167) https://pubmed.ncbi.nlm.nih.gov/17023717// 

(168) https://pubmed.ncbi.nlm.nih.gov/17053540/ 

(169) https://pubmed.ncbi.nlm.nih.gov/27425673/ 

(170) https://pubmed.ncbi.nlm.nih.gov/20181814/ 

(171) https://pubmed.ncbi.nlm.nih.gov/15447891/ 

(172) https://pubmed.ncbi.nlm.nih.gov/26561075/ 

(173) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575938/ 

(174) https://pubmed.ncbi.nlm.nih.gov/27070643/ 

(175) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203300/ 

(176) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4696435/ 

(177) https://pubmed.ncbi.nlm.nih.gov/29036814/ 

(178) https://pubmed.ncbi.nlm.nih.gov/30488803/ 

(179) https://pubmed.ncbi.nlm.nih.gov/32502596/ 

(180) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092919/ 

(181) https://pubmed.ncbi.nlm.nih.gov/31121255/ 

(182) https://pubmed.ncbi.nlm.nih.gov/25988362/ 

(183) https://pubmed.ncbi.nlm.nih.gov/19594223/ 

(184) https://pubmed.ncbi.nlm.nih.gov/30000873/ 

(185) https://pubmed.ncbi.nlm.nih.gov/14596440/ 

(186) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7322747/ 

(187) https://pubmed.ncbi.nlm.nih.gov/24052247/ 

(188) https://pubmed.ncbi.nlm.nih.gov/34803430/ 

(189) https://pubmed.ncbi.nlm.nih.gov/35600771/ 

(190) https://pubmed.ncbi.nlm.nih.gov/28054940/ 

(191) https://pubmed.ncbi.nlm.nih.gov/32010338/ 

(192) https://pubmed.ncbi.nlm.nih.gov/27263111/ 

(193) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6271092/ 

(194) https://pubmed.ncbi.nlm.nih.gov/32673835/ 

(195) https://examine.com/supplements/n-acetylcysteine/ 

(196) https://pubmed.ncbi.nlm.nih.gov/31043768/ 

(197) https://pubmed.ncbi.nlm.nih.gov/32726657/ 

(198) https://pubmed.ncbi.nlm.nih.gov/28303497/ 

(199) https://pubmed.ncbi.nlm.nih.gov/31043768/ 

(200) https://pubmed.ncbi.nlm.nih.gov/30772427/ 

(201) https://pubmed.ncbi.nlm.nih.gov/32526812// 

(202) https://pubmed.ncbi.nlm.nih.gov/19523343/ 

(203) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063497/ 

(204) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8413749/ 

(205) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3627470/ 

(206) https://pubmed.ncbi.nlm.nih.gov/34196467/ 

(207) https://pubmed.ncbi.nlm.nih.gov/23871076/ 

(208) https://pubmed.ncbi.nlm.nih.gov/22465818/ 

(209) https://pubmed.ncbi.nlm.nih.gov/33624846/ 

(210) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665023/ 

(211) https://pubmed.ncbi.nlm.nih.gov/32681941/ 

(212) https://pubmed.ncbi.nlm.nih.gov/35873544/ 

(213) https://www.healthline.com/nutrition/12-proven-benefits-of-pomegranate 

(214) https://pubmed.ncbi.nlm.nih.gov/36076756/ 

(215) https://pubmed.ncbi.nlm.nih.gov/26155780/ 

(216) https://pubmed.ncbi.nlm.nih.gov/32147056/ 

(217) https://en.wikipedia.org/wiki/Cannabinoid 

(218) https://pubmed.ncbi.nlm.nih.gov/34757526// 

(219) https://pubmed.ncbi.nlm.nih.gov/18073512/ 

(220) https://pubmed.ncbi.nlm.nih.gov/14757702/ 

(221) https://pubmed.ncbi.nlm.nih.gov/32758518/ 

(222) https://pubmed.ncbi.nlm.nih.gov/33289534/ 

(223) https://pubmed.ncbi.nlm.nih.gov/25848315/ 

(224) https://pubmed.ncbi.nlm.nih.gov/36528336/ 

(225) https://pubmed.ncbi.nlm.nih.gov/30448083/ 

(226) https://pubmed.ncbi.nlm.nih.gov/31831261// 

(227) https://pubmed.ncbi.nlm.nih.gov/30402203/ 

(228) https://pubmed.ncbi.nlm.nih.gov/35663580/ 

(229) https://pubmed.ncbi.nlm.nih.gov/30907316/ 

(230) https://pubmed.ncbi.nlm.nih.gov/33716675/ 

(231) https://pubmed.ncbi.nlm.nih.gov/35783147/ 

(232) https://pubmed.ncbi.nlm.nih.gov/27473605/ 

(233) https://pubmed.ncbi.nlm.nih.gov/35021981/ 

(234) https://pubmed.ncbi.nlm.nih.gov/31622587/ 

(235) https://pubmed.ncbi.nlm.nih.gov/22198697/ 

(236) https://pubmed.ncbi.nlm.nih.gov/35043757/

Terms and Conditions

Privacy Policy

Affiliate Disclosure

Disclaimer

21 Remarkable Benefits of ALCAR (Acetyl-L-Carnitine)

Acetyl-L-Carnitine, also known as ALCAR, is a natural compound that your body produces and utilizes every day. 

However, its profound health benefits have caught the attention of researchers, health enthusiasts, and everyday people looking to boost their brain function.

Acetyl-L-Carnitine is an acetylated form of L-Carnitine, an amino acid derivative found in our bodies and food, especially meat products. 

This essential nutrient plays a crucial role in energy production by transporting fatty acids into the mitochondria, which are the 'power plants' of your cells. 

The "Acetyl" group attached to the L-Carnitine molecule gives it the ability to cross the blood-brain barrier, where it exerts various neuroprotective effects.

This article aims to shine a light on ALCAR, its roles in your body, and the many ways in which it can enhance your cognitive performance. 

I'll delve into the science behind ALCAR, its numerous health benefits, and the current research surrounding it. 

I'll also guide you through its recommended dosage, and how to choose the right ALCAR supplement for your needs.

Continue reading to learn more about the remarkable benefits of ALCAR.

benefits-alcar-acetyl-carnitine-health-best-supplements-mental-brain-how-to-take-anti-aging-recommended-dosage-where-to-buy-energy-boost-memory-improvement-support-research-clinical-studies-neuroprotection-natural-cognitive-enhancement-top-rated-mito

What Is ALCAR (Acetyl-L-Carnitine)?

Acetyl-L-Carnitine (ALCAR) is a derivative of L-Carnitine, an amino acid that is naturally produced in the body. 

It plays a key role in the metabolism of fat, serving as a carrier that shuttles fatty acids into the mitochondria, the energy-producing structures in cells. Once inside the mitochondria, these fatty acids are burned, or oxidized, to produce energy.

What sets ALCAR apart from L-Carnitine is the acetyl group attached to the carnitine molecule. This modification allows ALCAR to cross the blood-brain barrier, a protective shield separating the general circulation from the brain environment. This makes ALCAR particularly effective in supporting brain health and cognitive function, as it can reach neurons more efficiently.

In supplement form, ALCAR is often used to support cognitive health and improve overall energy levels. It has neuroprotective and neuroenhancing effects, and research has indicated benefits in various neurological and cognitive conditions. 

However, while the body can naturally produce L-Carnitine, and to some extent ALCAR, dietary intake (particularly from meat) and supplementation can enhance its availability in the body. 

As a result, vegetarians, vegans, or individuals with certain health conditions can especially benefit from ALCAR supplementation.

 

How Does ALCAR Work in the Body and Brain?

Acetyl-L-Carnitine (ALCAR) plays several essential roles in your body and brain. 

Its primary function is related to the metabolism of fat, serving as a carrier molecule that shuttles fatty acids into the mitochondria. 

This is especially critical because the mitochondria, often referred to as the 'power plants' of your cells, are where these fatty acids are converted into usable energy in the form of adenosine triphosphate (ATP).

Beyond its role in energy metabolism, ALCAR stands out due to its ability to cross the blood-brain barrier. This is facilitated by the acetyl group attached to the carnitine molecule. 

Once in the brain, ALCAR contributes to the synthesis of the neurotransmitter acetylcholine, which is vital for memory, attention, and other cognitive functions.

 

21 Proven Benefits of ALCAR (Acetyl-L-Carnitine)

1. ALCAR Enhances Cognition, Memory and Learning

benefits-alcar-acetyl-carnitine-health-best-supplements-mental-brain-how-to-take-anti-aging-recommended-dosage-where-to-buy-energy-boost-memory-improvement-support-research-clinical-studies-neuroprotection-natural-cognitive-enhancement-top-rated-mito

Numerous studies have indicated that ALCAR supplementation improves cognition, memory and learning capacity

Research shows that ALCAR helps people with age-associated memory impairment (3). 

In one study, researchers found that ALCAR supplementation improved memory in older adults, specifically those with mild cognitive impairment (1). 

Another study showed that ALCAR alleviates chemotherapy-induced cognitive impairments, commonly referred to as "chemo brain" (2). 

The cognitive enhancement effects of ALCAR are primarily due to its role in cellular metabolism and its neuroprotective properties.

The brain is a highly energy-demanding organ, and adequate energy production is essential for optimal cognitive function. 

Therefore, by supporting mitochondrial function, ALCAR helps maintain and improve cognitive abilities, including memory and learning.

ALCAR also promotes the production of the neurotransmitter acetylcholine, which is vital for memory and learning.

 

2. ALCAR Helps With Cognitive Decline, Alzheimer's Disease and Dementia

Acetyl-L-Carnitine (ALCAR) has been studied for its benefits in managing cognitive decline, Alzheimer's disease, and other forms of dementia.

The compound's neuroprotective and metabolic functions in the brain are thought to underlie these effects.

Researchers have found that patients with Alzheimer's disease who are treated with ALCAR show significant improvement in several cognitive domains and slower cognitive decline (4). 

In one study, researchers found that supplementation with ALCAR improved memory and attention in subjects with mild cognitive impairment, which is often considered a precursor to Alzheimer's disease (5). 

In another study, elderly subjects who received ALCAR supplementation over a 6-month period showed significant improvements in cognitive function, including attention, long-term memory, verbal ability, and spatial orientation (6). 

Research also suggests that ALCAR can improve cognitive function and behavioral symptoms in patients with vascular dementia (7). 

These studies suggest that ALCAR has a positive effect on cognitive decline and dementia, including Alzheimer's disease

However, it’s important to understand that while the compound shows promise, it is not a cure for these conditions.

 

3. ALCAR Is Neuroprotective

Acetyl-L-Carnitine (ALCAR) exhibits neuroprotective properties, shielding neurons from damage and degeneration. 

It does this by reducing oxidative stress and neuroinflammation, both of which can lead to neuronal damage.

Research shows that ALCAR has antioxidant properties, which means it can help neutralize harmful free radicals in the brain.

In one study, researchers found that dietary supplementation with ALCAR protected the brain and reduced the decline in mitochondrial function associated with aging (8). 

In another study, researchers found that ALCAR protected the brain and improved neurological outcomes following traumatic brain injury (9).

Click here to subscribe

4. ALCAR Produces Energy and Increases Energy in the Brain

Similar to its role in other cells, Acetyl-L-Carnitine (ALCAR) helps in the transport of fatty acids into the mitochondria of brain cells

These fatty acids are then used to produce energy, which is vital for maintaining normal brain function.

Since Acetyl-L-Carnitine is involved in mitochondrial function and energy production, it supports the creation of ATP, the body's primary energy currency. A more efficient production of ATP translates to more available energy in the brain

In one study, researchers showed that ALCAR increased cellular respiration and ATP synthesis in neurons (11). 

ALCAR is also known to enhance brain energy metabolism and can help maintain the energy needs of the brain during stressful conditions.

In one study, ALCAR was shown to improve brain energy metabolism during recovery from hypoxia-ischemia (10). 

 

5. ALCAR Increases Acetylcholine in the Brain

The acetyl part of Acetyl-L-Carnitine (ALCAR) is used in the production of the neurotransmitter acetylcholine

Acetylcholine plays a critical role in many functions, including memory, learning, and attention.

By donating its acetyl group to the production of acetylcholine, ALCAR supports cognitive function and learning processes.

In one study, ALCAR increased choline acetyltransferase activity in certain areas of the brain. Choline acetyltransferase is an enzyme responsible for the synthesis of acetylcholine (13). 

In another study, ALCAR was found to restore the release of acetylcholine, which was decreased in aged rats. This restoration was associated with improved learning and enhanced cognitive function (14). 

ALCAR has also been found to slow the progression of Alzheimer's disease, and this effect is believed to be due in part to its influence on acetylcholine production (15). 

 

6. ALCAR Increases NGF (Nerve Growth Factor)

benefits-alcar-acetyl-carnitine-health-best-supplements-mental-brain-how-to-take-anti-aging-recommended-dosage-where-to-buy-energy-boost-memory-improvement-support-research-clinical-studies-neuroprotection-natural-cognitive-enhancement-top-rated-mito

Acetyl-L-Carnitine (ALCAR) increases and enhances the activity of nerve growth factor (NGF) in the brain.

NGF is a critical protein that helps in the growth, maintenance, and survival of nerve cells, including neurons.

In one study, researchers found that ALCAR enhances the production of NGF in the nervous system (16). 

Another study showed that long-term ALCAR administration increased NGF levels in the hippocampus (17). 

Researchers have also reported that ALCAR administration to aged rats significantly increases NGF levels and reverses the age-associated loss of NGF receptors in the brain (18-19). 

 

7. ALCAR Reduces Inflammation in the Brain

Acetyl-L-Carnitine (ALCAR) has anti-inflammatory properties and can help reduce inflammation in the brain.

In one study, researchers found that ALCAR reduced neuroinflammation and oxidative stress in a model of hypoxic brain injury (20). 

Researchers have noted that ALCAR can reduce the risk of developing neurodegenerative diseases likely by reducing inflammation and oxidative stress in the brain (21). 

Research papers have also highlighted the potential of ALCAR in modulating inflammation and oxidative stress in Alzheimer's disease (22).

 

8. ALCAR Improves Mood and Reduces Depression

Research suggests that Acetyl-L-Carnitine (ALCAR) has a beneficial impact on mood disorders such as depression.

It has mood-enhancing and antidepressant effects likely due to its influence on neurotransmitters and brain energy metabolism.

In one study, researchers found that ALCAR is a valid treatment for depression in the elderly, with similar efficacy to traditional antidepressants but fewer side effects (23). 

Another study found that ALCAR supplementation could reduce both depression and fatigue in patients with chronic illness (24). 

Researchers have also found that ALCAR levels are significantly decreased in individuals with major depressive disorder. They suggested that ALCAR supplementation could have antidepressant properties, especially in those with treatment-resistant depression and high inflammation (25).

Click here to subscribe

9. ALCAR Improves Focus and Helps with ADHD

Some studies have suggested that Acetyl-L-Carnitine (ALCAR) can help manage symptoms of Attention Deficit Hyperactivity Disorder (ADHD), especially in those who have a genetic variation that limits the body's natural production of carnitine (26). 

In one study, researchers found that ALCAR was significantly more effective than placebo in reducing attention problems and aggressive behavior in boys with ADHD (27). 

Another study found that ALCAR can enhance the release of dopamine in the brain, which could potentially enhance attention and focus (28).

 

10. ALCAR Reduces Anxiety and Stress

Research suggests that Acetyl-L-Carnitine (ALCAR) has anti-anxiety and stress-reducing effects.

One study showed that ALCAR reduced anxiety-like behavior in rats by altering the function of the GABAergic system (29). 

Researchers have also found that ALCAR prevents stress-induced changes in the brain, particularly in the hippocampus – a region of the brain important for stress response and emotion regulation (30). 

Other studies have shown that ALCAR supplementation can reverse the behavioral changes caused by chronic stress (31).

 

11. ALCAR Supports Mitochondria in the Brain

benefits-alcar-acetyl-carnitine-health-best-supplements-mental-brain-how-to-take-anti-aging-recommended-dosage-where-to-buy-energy-boost-memory-improvement-support-research-clinical-studies-neuroprotection-natural-cognitive-enhancement-top-rated-mito

Mitochondria are the "powerhouses" of our cells. They’re responsible for creating energy in our cells. 

Acetyl-L-Carnitine (ALCAR) supports the health and function of the mitochondria. This is particularly important in the brain, where energy demand is high.

Mitochondrial dysfunction is also linked to numerous diseases and health conditions.

Research shows that ALCAR is actively transported across the blood-brain barrier and into the brain mitochondria, where it plays a key role in energy metabolism within the brain.

In one study, researchers found that ALCAR improves mitochondrial efficiency and prevents age-related mitochondrial changes (12). 

Supplementation with ALCAR also reduces the decline in mitochondrial function associated with aging, leading to increased energy production and improved cognitive function (8).

 

12. ALCAR Helps With Addiction

Acetyl-L-Carnitine (ALCAR) can also benefit individuals struggling with addiction.

Research suggests that ALCAR can assist in the recovery from alcohol addiction by reducing cravings and alleviating withdrawal symptoms

In one study, researchers found that ALCAR supplementation reduced alcohol intake and relapse in alcohol-dependent rats. 

The authors suggested that ALCAR might modulate the balance of excitatory and inhibitory neurotransmission in the brain, which is often disrupted in alcohol dependence (32). 

Research also shows that ALCAR reduces self-administration of morphine and reduces withdrawal symptoms in opioid-dependent rats. 

The authors speculated that ALCAR might influence opioid receptors or alter pain perception, which could be beneficial in managing opioid addiction (33). 

Another study found that ALCAR reduces the self-administration and seeking of methamphetamine in rats. 

The authors suggested that ALCAR might help in managing methamphetamine addiction by reducing drug-seeking behavior (34). 

 

13. ALCAR Helps with Chronic Fatigue Syndrome

There is some evidence that Acetyl-L-Carnitine (ALCAR) can help reduce feelings of physical and mental fatigue, making it useful for conditions such as chronic fatigue syndrome (CFS).

Research shows that Acetyl-L-Carnitine deficiency is common in people with CFS (36-37). 

In one study, researchers gave ALCAR to CFS patients, and they found that it led to significant improvements in cognitive function, particularly in terms of attention and concentration.

Another study found that ALCAR significantly improved the physical and mental fatigue associated with CFS (35). 

Click here to subscribe

14. ALCAR Helps with Fibromyalgia 

Research suggests that Acetyl-L-Carnitine (ALCAR) can help alleviate symptoms associated with fibromyalgia, a chronic disorder characterized by widespread pain and fatigue.

It is believed that ALCAR helps by boosting energy production and reducing pain perception.

In one study, researchers found that fibromyalgia patients who took ALCAR experienced significant improvements in pain and depression compared to those who took a placebo. 

The study concluded that ALCAR may be a promising treatment for fibromyalgia, particularly for reducing pain and improving the overall mental health of patients (38). 

Researchers have also examined the role of ALCAR in managing pain conditions, including fibromyalgia. They found that ALCAR appears to have a modulating effect on pain perception and can be effective in treating various forms of chronic pain, including fibromyalgia (39).

 

15. ALCAR Helps with Down Syndrome 

Down Syndrome is a condition caused by an extra copy of chromosome 21, leading to physical and cognitive developmental delays.

While there is currently no cure, certain interventions and therapies can help individuals with Down Syndrome live more fulfilling lives.

Research suggests that Acetyl-L-Carnitine (ALCAR) can have benefits in improving cognitive function in individuals with Down Syndrome.

In one study, researchers found that ALCAR can help improve attention, verbal short-term memory, and visual long-term memory in individuals with Down Syndrome (40). 

ALCAR supplementation also decreases oxidative stress and improves the metabolic profile in children with Down syndrome.

 

16. ALCAR Helps with Autism

benefits-alcar-acetyl-carnitine-health-best-supplements-mental-brain-how-to-take-anti-aging-recommended-dosage-where-to-buy-energy-boost-memory-improvement-support-research-clinical-studies-neuroprotection-natural-cognitive-enhancement-top-rated-mito

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder with varied symptoms across different individuals, often involving challenges with social skills, repetitive behaviors, speech, and nonverbal communication.

Individuals with ASD often have mitochondrial dysfunction. As a result, researchers believe that Acetyl-L-Carnitine (ALCAR) can help them since it improves mitochondrial function (41). 

One study showed that ALCAR can help improve social behavior and communication in children with autism. 

The study involved 13 boys diagnosed with ASD. The boys were given ALCAR over a 90-day period, and the parents and physicians reported that ALCAR was associated with improvements in the children's social behavior, attention, and expressive language (42).

 

17. ALCAR Helps with Parkinson’s Disease

Parkinson's disease is a progressive neurodegenerative disorder characterized by motor symptoms like tremors, rigidity, and bradykinesia (slowness of movement), as well as non-motor symptoms such as cognitive impairment and mood disorders.

Some research indicates that Acetyl-L-Carnitine (ALCAR) has neuroprotective effects that could slow the progression of neurodegenerative diseases like Parkinson's. 

One study showed that ALCAR reduced the loss of dopamine-producing neurons in a mouse model of Parkinson's disease. This suggests that ALCAR could have neuroprotective effects that are relevant to Parkinson's disease (43). 

ALCAR also promotes hippocampal neurogenesis in rat models of Parkinson's disease (44). 

 

18. ALCAR Helps with Multiple Sclerosis

Multiple sclerosis (MS) is a chronic disease that affects the central nervous system, leading to a variety of symptoms that can include fatigue, difficulty walking, numbness or tingling, muscle weakness, and problems with coordination and balance.

Research suggests that Acetyl-L-Carnitine (ALCAR) improves fatigue in individuals with multiple sclerosis.

In one study, MS patients receiving ALCAR reported reduced fatigue severity compared to a placebo group. The researchers suggested that ALCAR can help reduce fatigue in multiple sclerosis patients by enhancing nerve function (45). 

Click here to subscribe

19. ALCAR Improves Gut Health

Research suggests that Acetyl-L-Carnitine (ALCAR) could support gut health, in part by modulating the gut microbiome.

Researchers have found that carnitine protects and supports gut microbial species (46). 

Carnitine also plays an important role in maintaining the high fiber fermentation ability of the microbiota (46). 

Colonic microbiota can use carnitine as a source of carbon, nitrogen, or as an electron acceptor (46).

Furthermore, carnitine is utilized by the intestinal microbiota as a protective solute against different stressors (46). 

 

20. ALCAR Reduces Migraine Severity 

Research suggests that Acetyl-L-Carnitine (ALCAR) can help reduce the severity and frequency of migraine headaches.

This is likely due to its role in energy production and neuroprotection, as well as its potential to modulate neurotransmitters, all of which can be relevant in the context of migraines.

In one study, researchers gathered 30 patients with migraines without aura. 

Participants were randomly assigned to receive either ALCAR daily or a placebo for 12 weeks.

The study found that those in the ALCAR group had a significant decrease in the severity of their migraines (47-49). 

 

21. ALCAR Helps with Traumatic Brain Injuries and Concussions 

benefits-alcar-acetyl-carnitine-health-best-supplements-mental-brain-how-to-take-anti-aging-recommended-dosage-where-to-buy-energy-boost-memory-improvement-support-research-clinical-studies-neuroprotection-natural-cognitive-enhancement-top-rated-mito

Acetyl-L-Carnitine (ALCAR) has benefits for those recovering from traumatic brain injuries (TBIs) and concussions. 

This is primarily due to its neuroprotective properties and its role in energy production.

In one study, researchers found that ALCAR improved neurological outcomes following traumatic brain injury (9). 

ALCAR can help to protect neurons and other cells from damage. This can be especially beneficial after a traumatic brain injury, which often causes significant cellular damage.

ALCAR is also known for supporting the function of mitochondria. This can help improve the energy status of the brain after a TBI or concussion and promote recovery.

 

Sources of ALCAR

ALCAR (Acetyl-L-Carnitine) is naturally produced in our bodies, but it can also be obtained from dietary sources and supplements

While ALCAR itself is not directly present in food, its precursor, L-carnitine, can be found in various foods. 

The body can convert some of this L-carnitine into ALCAR. 

Red meat, particularly lamb and beef, is a significant source of L-carnitine. Poultry and fish also contain smaller amounts. These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

Milk and other dairy products also contain a decent amount of L-carnitine.

Vegetables, fruits, and grains contain only trace amounts of L-carnitine, making it challenging for vegetarians and vegans to get adequate L-carnitine from their diet alone.

 

The Best ALCAR Supplement and How To Take It

Since Acetyl-L-Carnitine (ALCAR) is available as a supplement, it's very easy to incorporate it into your daily routine.

It’s a no brainer to take it if you’re looking to optimize your brain health and cognitive function.

In fact, supplementing with ALCAR has become very popular over the years due to its amazing cognitive-enhancing and neuroprotective effects.

ALCAR is available in various supplemental forms, including capsules and powder.

Since it has so many beneficial effects on the brain, I decided to include it in the Optimal Brain supplement. 

You can get Optimal Brain here.

Optimal Brain includes ALCAR, plus several other natural compounds that have been shown to improve brain function.

Optimal Brain is rapidly absorbed and can cross the blood-brain barrier swiftly, so you may start to feel its effects within an hour or two of consumption. 

Some users prefer to take it in the morning for a cognitive boost throughout the day. 

Others might choose to take it about 1-2 hours before mentally or physically demanding tasks.

Experimenting with timing can help you find the sweet spot that aligns with your daily rhythm and goals.

 

Recommended Dosage For ALCAR

The recommended dosage for Acetyl-L-Carnitine (ALCAR) can vary depending on factors such as age, health condition, and individual needs. 

But a common dose range is between 500 mg to 2,000 mg per day. 

It's usually recommended to start with a lower dose and gradually increase as tolerated. 

It's also often suggested to take ALCAR with meals to reduce the risk of gastrointestinal side effects.

The Optimal Brain supplement includes 500 mg of ALCAR. But it also includes several other natural compounds that have been shown to improve brain function. These ingredients work synergistically with ALCAR. Since they all work better together, you don’t need to take as large of a dose of ALCAR for optimal results.

You can get Optimal Brain here.

As we move forward in our understanding of the human brain and its potential, supplements like ALCAR become powerful tools in our quest for enhanced cognitive function, brain health, and overall wellbeing. 

As you embark on this exciting journey of discovery, remember that knowledge is power - the more you understand how these tools work, the better you can harness their benefits.

 

 Enjoy This Article? You Might Also Like My FREE Food Guide for Optimal Brain and Mental Health!

Click here to subscribe

Live Optimally, 

Jordan Fallis 

Connect with me

References:

(1) https://pubmed.ncbi.nlm.nih.gov/18065594/ 

(2) https://link.springer.com/article/10.1007/s11481-023-10062-1 

(3) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6991156/ 

(4) https://pubmed.ncbi.nlm.nih.gov/12598816/ 

(5) https://pubmed.ncbi.nlm.nih.gov/18065594/ 

(6) https://pubmed.ncbi.nlm.nih.gov/7813389/ 

(7) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284336/ 

(8) https://pubmed.ncbi.nlm.nih.gov/11854487/ 

(9) https://pubmed.ncbi.nlm.nih.gov/20477950/

(10) https://pubmed.ncbi.nlm.nih.gov/1519288/ 

(11) https://pubmed.ncbi.nlm.nih.gov/19720082/ 

(12) https://pubmed.ncbi.nlm.nih.gov/11854529 

(13) https://pubmed.ncbi.nlm.nih.gov/8137174/ 

(14) https://pubmed.ncbi.nlm.nih.gov/20590847/ 

(15) https://pubmed.ncbi.nlm.nih.gov/12598816/ 

(16) https://pubmed.ncbi.nlm.nih.gov/1655307/ 

(17) https://pubmed.ncbi.nlm.nih.gov/3229322/ 

(18) hhttps://pubmed.ncbi.nlm.nih.gov/8187841/ 

(19) https://pubmed.ncbi.nlm.nih.gov/8137174/ 

(20) https://pubmed.ncbi.nlm.nih.gov/19464271/

(21) https://pubmed.ncbi.nlm.nih.gov/11854529/ 

(22) https://www.sciencedirect.com/science/article/pii/S0753332222007491 

(23) https://pubmed.ncbi.nlm.nih.gov/2099360/ 

(24) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8514700/ 

(25) https://pubmed.ncbi.nlm.nih.gov/30061399/ 

(26) https://pubmed.ncbi.nlm.nih.gov/18286595/ 

(27) https://pubmed.ncbi.nlm.nih.gov/12213433/ 

(28) https://pubmed.ncbi.nlm.nih.gov/1839317/ 

(29) https://pubmed.ncbi.nlm.nih.gov/22549035/

(30) https://www.nature.com/articles/s41386-018-0227-1 

(31) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6970538/ 

(32) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407613/ 

(33) https://www.researchgate.net/publication/23445942_Acetyl-L-Carnitine_in_the_Management_of_Pain_During_Methadone_Withdrawal_Syndrome 

(34) https://pubmed.ncbi.nlm.nih.gov/16647107/ 

(35) https://pubmed.ncbi.nlm.nih.gov/15039515/ 

(36) https://pubmed.ncbi.nlm.nih.gov/8148455/ 

(37) https://pubmed.ncbi.nlm.nih.gov/8544970/

(38) https://pubmed.ncbi.nlm.nih.gov/17543140/ 

(39) https://pubmed.ncbi.nlm.nih.gov/34500063/

(40) https://pubmed.ncbi.nlm.nih.gov/8181206/ 

(41) https://pubmed.ncbi.nlm.nih.gov/25019065/ 

(42) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930613/ 

(43) https://pubmed.ncbi.nlm.nih.gov/26223802/ 

(44) https://pubmed.ncbi.nlm.nih.gov/28577987/ 

(45) https://pubmed.ncbi.nlm.nih.gov/14759641/ 

(46) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5979481/ 

(47) https://pubmed.ncbi.nlm.nih.gov/33755806/ 

(48) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707228/ 

(49) https://journals.sagepub.com/doi/10.1177/0333102418821661 

Terms and Conditions

Privacy Policy

Affiliate Disclosure

Disclaimer