29 Effective Ways to Reduce Excess Glutamate in the Brain

Your brain isn't just a bunch of grey matter.

It’s an intricate network of billions of neurons, communicating through neurotransmitters. 

One of these key neurotransmitters is glutamate.

Glutamate is an unsung hero, playing a vital role in your brain function and mental health.

However, as with many things in life, balance is key. 

Glutamate is necessary for optimal brain function, but an excess can cause problems and impact your brain health. 

That’s why understanding and managing glutamate levels in your brain is very important. 

In this article, we’ll explore the fascinating world of glutamate. 

I’ll delve into its function, and explain the causes and implications of excess glutamate.

But most importantly, I’ll share 29 practical strategies to reduce excess glutamate in the brain. 

This is essential reading for anyone who wants to maintain balanced glutamate levels and optimize their brain function and mental health. 

Are you ready to unravel the mysteries of glutamate?

Let's get started.

ways-to-reduce-excess-glutamate-in-the-brain-reducing-lower-reduction-techniques-natural-supplements-reducers-detox-control-levels-overload-balance-imbalance-guide-how-to-tips-neurological-health-mental-foods-lifestyle-changes-neurotransmitters-neuro

Understanding Glutamate: What Is It? What Does It Do in the Brain?

Imagine the brain as a bustling city.

It’s full of activity and flashing lights.

Signals are being sent back and forth. 

Central to all of this activity is glutamate.

Glutamate is one of the most abundant neurotransmitters in your nervous system. 

Glutamate enables communication between neurons, supporting crucial functions such as learning, memory, and cognitive processes.

It essentially acts like a postman in the brain, delivering messages between neurons.

When a neuron releases glutamate, it binds to specific receptors on a nearby neuron. 

This triggers an electrical signal that moves through the neuron.

This then stimulates various responses that allow your brain to function normally. 

So glutamate carries messages from neuron to neuron.

But, for all its importance, glutamate is also a bit of a Jekyll and Hyde character. 

It's a necessity for normal brain function, but glutamate levels can get too high.

And this can have harmful consequences. 

This is due to glutamate's excitatory nature.

Glutamate stimulates neurons to fire. In excess, this can lead to the overexcitation of neurons, a state known as excitotoxicity. 

This excitotoxicity can cause neuronal damage or death, which can then lead to various neurological conditions such as Alzheimer's disease, stroke, and epilepsy.

Moreover, glutamate excess isn't a rare occurrence. It can be triggered by factors like stress, low magnesium levels, poor diet, alcohol and drug use, and even genetic predisposition.

Therefore, while glutamate is vital for our brains, it's a substance we need to handle with care. 

Like city traffic, the right amount keeps things flowing smoothly. But too much can lead to chaos. 

Understanding how to control glutamate levels in your brain is a vital step towards ensuring your brain runs smoothly and healthily. 

In the upcoming sections, I'll explore the benefits of reducing glutamate, the signs and symptoms of excess glutamate, and then discuss practical strategies to keep it under control.

 

The Benefits of Reducing Excess Glutamate in the Brain

Maintaining a healthy balance of glutamate is crucial.

Reducing excess glutamate can have numerous benefits for brain health and overall wellbeing.

Here are some of the health benefits of reducing excess glutamate in the brain:

Neuroprotection: High levels of glutamate can cause excitotoxicity, a state of hyperactivity that can damage or even kill neurons. By keeping glutamate levels in check, you protect your neurons from damage, preserving the health and integrity of your brain tissue (70). 

Reduced Risk of Neurological Disorders: Several neurological disorders, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis, have been linked to excessive glutamate activity. By regulating glutamate levels, you can reduce the risk or slow the progression of these disorders (71-73). 

Improved Mental Health: Excess glutamate activity has also been implicated in several mental health disorders, including anxiety, depression, and schizophrenia. Balancing glutamate levels can help manage symptoms and promote better mental health (74-76). 

Cognitive Enhancement: Glutamate is essential for synaptic plasticity, the process by which connections between neurons are strengthened or weakened, which is crucial for learning and memory. However, too much glutamate can interfere with this process. By reducing excess glutamate, you can enhance your cognitive function (77). 

Prevention of Migraines and Seizures: Excessive glutamate release can lead to hyperexcitability of neurons, which can trigger migraines and seizures. Maintaining a healthy balance of glutamate can help prevent these issues (78-79). 

Reduced Inflammation: Glutamate is involved in inflammatory processes within the brain. High levels of glutamate can contribute to neuroinflammation, which is linked to many brain disorders. Reducing excess glutamate can help control inflammation, further protecting brain health (80-81).

 

Signs, Symptoms and Health Conditions Associated with Excess Glutamate in the Brain

While we’ve established that glutamate is a key player in the brain, like an overenthusiastic musician, it can throw the entire orchestra out of tune when it plays too loudly.

But how do we know when glutamate is in overdrive? 

Here, I’ll discuss the signs, symptoms and health conditions that indicate that you could have excess glutamate levels in your brain.

Remember, excess glutamate causes excitotoxicity – an overexcitation of neuronal activity. 

This overexcitation can manifest in various ways, but some common symptoms and conditions include:

Alzheimer's Disease: Research points to glutamate excitotoxicity as a key player in the onset and progression of Alzheimer's disease. This overstimulation of neurons by glutamate was found to contribute to the neural damage observed in this debilitating condition (72). 

Amyotrophic Lateral Sclerosis (ALS): Also known as Lou Gehrig's disease, this is a neurodegenerative disorder affecting motor neurons. Excitotoxicity is thought to be one of the factors leading to motor neuron death in ALS (82). 

Traumatic Brain Injury (TBI): After a TBI, there can be a surge of glutamate that leads to excitotoxicity and further brain damage (83). 

Other Neurodegenerative Diseases: These include Parkinson's disease and Huntington's disease. In these conditions, excitotoxicity caused by excess glutamate can contribute to the progressive loss of neurons (71). 

Stroke: During a stroke, the lack of oxygen and glucose can lead to a massive release of glutamate, causing excitotoxicity and contributing to the damage seen in stroke (84). 

Migraines: Studies highlight the role of elevated glutamate levels in triggering migraines. Excess glutamate was found to stimulate pain pathways in the brain, leading to the onset of migraines (78-79). 

Epilepsy: Glutamate is involved in the initiation and spreading of seizure activity. Overexcitation of neurons can trigger seizures, and antiepileptic drugs often work by decreasing glutamate levels or blocking its effects (78-79). 

Multiple Sclerosis: Some studies have suggested that glutamate excitotoxicity might be involved in the damage to neurons seen in multiple sclerosis (73). 

Autism: Some research indicates that people with autism might have higher levels of glutamate, which could play a role in the symptoms of this condition (85). 

Anxiety and Restlessness: Excess glutamate can lead to feelings of unease and nervousness, as the brain becomes overstimulated (86). 

Insomnia: With glutamate firing up neurons, it can make it challenging for the brain to wind down for sleep (87). 

Cognitive Impairment: Over time, chronic excess glutamate can lead to cognitive issues, such as memory loss or difficulty concentrating (88). 

Low Mood and Depression: An imbalance in glutamate has been linked to mood disorders, including depression and bipolar disorder. Certain treatments for depression, such as ketamine, work by blocking glutamate activity (89). 

Hyperactivity and ADHD: High glutamate levels are often observed in individuals with ADHD, contributing to their hyperactivity and difficulty focusing (90). 

Schizophrenia: Studies suggest that schizophrenia might be related to hyperactivity of the glutamatergic system (91). 

While research clearly illustrates that excess glutamate can cause harm, it's important to remember that glutamate isn't inherently 'bad'. In fact, it's crucial for our brain function. 

The key lies in maintaining a balanced level of this vital neurotransmitter. In fact, balance is a central theme in brain health, and glutamate is no exception. 

When in balance, glutamate facilitates learning, memory, and cognition, orchestrating a well-functioning neural network. 

But when levels tip towards excess, it can lead to overstimulation of neurons, resulting in a range of symptoms and conditions that I discussed above.

Maintaining balanced glutamate levels is, therefore, of paramount importance for our brain health and overall wellbeing. 

Just as a tightrope walker maintains a delicate balance to cross safely, so too must we balance our glutamate levels to ensure optimal brain function.

In the next sections, I'll delve into the science-backed steps you can take to reduce excess glutamate and keep it in balance.

 

The Best Lifestyle Habits, Therapies and Practices Proven to to Reduce Excess Glutamate in the Brain

1. Exercise 

Physical activity has been shown to have profound effects on the brain, influencing cognition and mood.

This includes the regulation of neurotransmitters, including glutamate.

Research shows that exercise enhances overall brain metabolism, which involves the efficient processing and clearance of excess glutamate (4). 

Exercise can also stimulate the conversion of glutamate into glutamine by activating an enzyme called glutamine synthetase (5). 

This enzyme produces more glutamine, which is less excitatory than glutamate, and it can safely be stored in the brain or transported out of it.

Exercise can also enhance the expression of glutamate transporters, which are proteins responsible for moving glutamate away from the extracellular space where it can cause harm. As a result, exercise can help prevent the excessive accumulation of glutamate (6). 

Exercise is recommended by many experts and it’s often their number one piece of advice for optimal brain health.

My usual advice is to find a sport or exercise routine that you enjoy, so that you’ll stick with it consistently.

Exercise also increases endorphins, nerve-growth factor, orexin, HRV, GABA, GDNF, and reduces inflammation in the brain.

 

2. Reduce Stress

High stress levels can influence glutamate production and increase glutamate levels in the brain.

Chronic or acute stress triggers a cascade of physiological responses, including the activation of the hypothalamic-pituitary-adrenal (HPA) axis.

Stress also increases the release of cortisol, a hormone that is released during stressful events.

These changes can then lead to an increase in glutamate levels.

Research shows that high levels of cortisol can increase glutamate release in certain regions of the brain (7). 

Stress reduction can also promote the production of GABA, a neurotransmitter that counteracts the excitatory effects of glutamate.

Therefore, it's important to develop effective stress-management techniques. 

The techniques to manage stress can vary widely. But many have been shown to have a positive impact on glutamate levels.

Some examples include meditation, yoga, tai chi, deep breathing, biofeedback, counseling and therapy, or even just pursuing a hobby that brings you joy and relaxation.

Remember, it's important to choose stress management techniques that suit your lifestyle and preferences, and regular practice is key.

 

3. Acupuncture

Acupuncture is an integral part of Traditional Chinese Medicine.

It has been practiced for hundreds of years for a variety of ailments. 

Acupuncture involves the insertion of thin needles into specific points on the body, known as acupoints, to manipulate the flow of energy and restore balance within the body.

Some studies suggest that acupuncture can help to balance glutamate levels in the brain.

Acupuncture can also stimulate the production of GABA, the brain's primary inhibitory neurotransmitter that counteracts the excitatory effects of glutamate (8). 

Acupuncture is also known for its anti-inflammatory properties. Inflammation can stimulate glutamate release and impede its clearance, so acupuncture's ability to reduce neuroinflammation can help regulate glutamate levels (9). 

I’m personally a big fan of auricular acupuncture. Auricular acupuncture is when needles are inserted into the ear. 

I’d recommend trying to find a health practitioner in your area who provides it, especially if you’re weaning off psychiatric medication. It really helped me the first time I came off antidepressants. I was surprised. At the end of each appointment, my practitioner would secure small black seeds on my ear.

In my experience, ear acupuncture is more effective than regular acupuncture.

I also often lie on an acupuncture mat at home to relax before bed.

Click here to subscribe

4. Meditation

Meditation is a mind-body practice that promotes focused attention, mindfulness, and a sense of inner peace.

It has gained significant attention for its potential to enhance mental wellbeing and resilience. 

Meditation is personally one of my favorite daily activities to maintain optimal brain function and mental health.

It can influence various physiological and psychological processes, including the regulation of neurotransmitters like glutamate.

Research shows that meditation can stimulate the production of GABA,, an inhibitory neurotransmitter that counteracts the excitatory effects of glutamate (10). 

Meditation can also influence brain metabolism, leading to improved energy utilization and clearance of waste products, including excess glutamate (12). 

Meditation comes in many forms, including mindfulness meditation, loving-kindness meditation, guided imagery, and body scan practices. 

Experiment with different forms to find one that resonates with you.

You should aim for at least 10-20 minutes of meditation per day.

If you're new to meditation, start with just a few minutes each day and then gradually increase the time as you become more comfortable with the practice.

Remember, the benefits of meditation are usually seen with regular and consistent practice. 

Make it a part of your daily routine, whether it's first thing in the morning, during your lunch break, or before bedtime.

If you're new to meditation, you might want to start with guided practices, or even seek the assistance of a meditation teacher. 

There are also many apps available that offer guided meditations. These can be particularly helpful for beginners.

I personally use and recommend the Muse headband to meditate. It gives you real-time feedback while you meditate. It makes meditation a lot more fun and tolerable. 

I previously wrote about it here, and you can get it through the Muse website.

Remember, just like any other skill, meditation takes practice and patience. Don't be discouraged if you don't see immediate changes. Over time, with consistent practice, you're likely to notice further improvements.

Always remember that the goal is not perfection but rather developing a greater sense of awareness and peace.

 

5. Yoga

Yoga is an ancient practice originating from India.

It involves a combination of physical postures, breath control, and meditation. 

Yoga is increasingly recognized for its numerous physical and mental health benefits.

Its benefits extend to the regulation of brain chemistry, including neurotransmitters such as glutamate.

Yoga can stimulate the production of GABA, an inhibitory neurotransmitter that counteracts the excitatory effects of glutamate (11). 

Keep in mind that yoga practice should be adapted to individual abilities and needs.

It is often beneficial to seek instruction from a certified yoga teacher, especially for beginners.

So, consider joining a local yoga class or find online yoga classes that suit your level. The guidance of a professional can help you ensure proper form and avoid injury.

Consistency is also key. Even if it's just 15-20 minutes, regular practice can result in significant benefits.

Try different types of yoga to keep things interesting and to benefit from different postures and practices. This could include Hatha, Vinyasa, Yin, or Restorative yoga.

Despite all the great research behind yoga, I’m personally not a big fan of it. A lot of people swear by it but it’s just not for me. I prefer meditation and neurofeedback, which I’ll talk about now. 

 

6. Neurofeedback

Neurofeedback, also known as EEG Biofeedback, is a type of biofeedback therapy that provides real-time displays of brain activity with the goal of self-regulation. 

It involves observing one's own brain waves via an electroencephalogram (EEG) and learning how to control or modify them through feedback. 

Neurofeedback has shown promise in the treatment of various neurological and psychiatric conditions.

Recent research suggests it also plays a role in regulating neurotransmitters such as glutamate (13). 

Studies have shown that neurofeedback training can balance the excitatory (glutamate) and inhibitory (GABA) neurotransmitter systems (14). 

Personally, neurofeedback was one of the most impactful actions I took to overcome severe anxiety. 

It works at a deep subconscious level, breaking the cycle of chronic anxiety.  

It shifts you into a natural, healthier state of mind.  

If you want to try neurofeedback, it’s best to work with a qualified neurofeedback practitioner to ensure the correct protocols are used. They’ll also interpret and respond to the feedback effectively.

If you’re interested in neurofeedback, I recommend becoming a client and working with us to determine the best type of neurofeedback for you and your condition. I have found that some types of neurofeedback are completely ineffective and may even be harmful. So it’s very important to do the right type of neurofeedback that actually works. 

I also sometimes recommend the Muse headband. It’s a decent substitute to real neurofeedback and gives you real-time feedback on your brain waves while you meditate. 

I previously wrote about the Muse headband here, and you can get it through the Muse website. But keep in mind that it’s definitely not as effective as clinical neurofeedback.

 

7. Deep Sleep

Sleep serves multiple critical roles in the body, from the consolidation of memory to the maintenance of mental health. 

Research clearly shows that sleep plays a vital role in brain chemistry regulation, particularly concerning glutamate.

During the deep stages of sleep, the brain's glymphatic system (a waste clearance system) becomes more active. This system facilitates the removal of excess glutamate and other waste products from the brain, helping to maintain optimal glutamate balance (15). 

Sleep also provides neurons a break from the constant excitatory activity that occurs during wakefulness, reducing the demand for glutamate. This pause allows for the maintenance of glutamate balance and prevents the overstimulation that could lead to excess glutamate.

Non-REM sleep also promotes the production of GABA, an inhibitory neurotransmitter that counteracts the excitatory effects of glutamate (16). 

Given the connection between sleep and glutamate regulation, prioritizing good sleep hygiene is crucial. 

This involves maintaining a regular sleep schedule, creating a quiet and comfortable sleep environment, and addressing any underlying sleep issues.

Good sleep isn't a luxury. It's a necessity for optimal brain function and mental health.

I personally used to have very poor sleep and it was one of the main factors that contributed to my poor brain function and mental health.

If you’re having trouble with sleep, try this sleep supplement. It contains natural compounds that I’ve used over the years to get deeper and more restful sleep. 

I also work with my clients so that they can naturally produce more melatonin and maximize the quality of their sleep without so many supplements. We have a free online workshop that talks about how you can work with us. You can register for the workshop here.

 

8. Avoid Neurotoxins

Neurotoxins are substances that can interfere with the structure or function of nervous tissue, including the neurons in our brain. 

They can be found in a variety of environmental sources, including certain foods, heavy metals, pesticides, certain types of molds, and even in some household cleaning products. 

Exposure to these neurotoxins can stimulate glutamate activity. Their detrimental impact on the brain can exacerbate the levels of glutamate and the effects of glutamate. They can inhibit the reuptake of glutamate, leading to its accumulation (17). 

Many neurotoxins also increase the excitatory stimulation of neurons, often by mimicking the actions of glutamate. This can lead to an overstimulated, or 'excited', state in the brain that can result in neurotoxicity (18). 

By avoiding neurotoxins, you can help prevent overstimulation and glutamate-induced excitotoxicity.

Many neurotoxins can also trigger inflammation in the brain, which can stimulate the release of glutamate and hinder its clearance (19).

However, reducing your exposure to neurotoxins can reduce chronic inflammation and help regulate glutamate levels.

Avoiding neurotoxins involves lifestyle changes such as: 

  • Choosing organic produce

  • Using natural cleaning products

  • Ensuring good ventilation in your living and working spaces

  • Ensuring safe drinking water

  • Having regular checks for mold or heavy metal exposure

Although complete avoidance may not always be possible due to ubiquitous environmental pollutants, reducing exposure and supporting the body's detoxification pathways can significantly help.

 

9. Stay Hydrated

Water is essential for all bodily functions.

This includes the efficient removal of toxins and waste products that can interfere with the regulation of neurotransmitters, including glutamate.

Water is essential for the proper functioning of the brain's transport systems, which remove excess glutamate and other waste products. 

Without sufficient hydration, these transport systems work less efficiently, leading to an accumulation of glutamate (20). 

So don't wait until you're thirsty to drink water. Make it a habit to sip on water throughout the day.

To stay adequately hydrated, it's generally recommended to consume at least eight 8-ounce glasses of water a day. But this can vary based on individual needs, climate, and activity level. 

Pay attention to signs of dehydration, which can include dry mouth, fatigue, and darker urine.

Athletes or people who exercise regularly may need more fluids to replace the water lost through perspiration.

Furthermore, hydration doesn’t only come from water, but also from consuming a diet rich in fruits and vegetables, which have high water content.

Proper hydration is definitely an easily overlooked but important factor in the optimization of brain function. 

Just make sure you’re drinking the purest water possible. I use a water filter to make sure I’m drinking the purest water available. It filters everything out of the water.

Click here to subscribe

10. Detoxification

Detoxification is the body's natural process of neutralizing or eliminating toxins.

The body accomplishes this primarily through the liver, kidneys, and to some extent, the gastrointestinal tract, skin, and lungs. 

This is an essential aspect of maintaining optimal health.

Toxins can originate from both internal sources (like metabolic byproducts) and external sources (such as pollutants, chemicals, and heavy metals).

Some toxins have neurotoxic properties, which means they can damage neurons or disrupt neuronal function. 

These neurotoxins can contribute to excess glutamate by increasing glutamate release or blocking its reuptake (21). 

By promoting detoxification, you help your body eliminate these toxins and reduce the neurotoxic burden (22). 

As a result, you’re more likely to maintain balanced glutamate levels.

Some toxins can also trigger an inflammatory response, which can increase glutamate levels (23). 

Effective detoxification can help modulate this immune response, helping your body maintain glutamate balance (24). 

If you want to increase detoxification, you can try dry brushing, infrared sauna sessions, or eating lots of antioxidant-rich fruits and vegetables.

Other detoxification strategies include regular exercise, hydration, dietary changes, and the use of specific supplements or therapies that support the liver and other detoxifying organs.

Optimal Antiox can also help with brain detoxification.

 

11. Limit Exposure to Loud Noises

The impact of noise on health is a burgeoning field of study.

Interestingly, prolonged exposure to loud noise has been associated with increased levels of glutamate. 

Research shows that loud noise can release too much glutamate, overwhelming the glutamate receptors. This can then lead to loss of synapses and, eventually, a condition called sensorineural hearing loss (25). 

Chronic noise exposure can also act as a stressor, triggering the release of stress hormones that can increase glutamate levels (26). 

So it’s best to try to limit your exposure to loud noise as much as possible.

Practical strategies for reducing exposure to loud noises include:

  • Using earplugs or noise-canceling headphones in noisy environments

  • Limiting the use of loud machinery or equipment

  • Creating a quiet, peaceful environment at home and at work

Regular hearing checks can also help monitor any potential noise-induced hearing damage.

 

12. Cold Exposure

Cold exposure, or cold thermogenesis, is the process of subjecting your body to cold temperatures to stimulate physiological responses. 

Benefits can range from improved immune function and metabolism to enhanced mood and cognitive function. 

Cold exposure could also influence glutamate regulation. 

In one study, researchers found that glutamate transmission is decreased in the brain during cold exposure (3). 

Cold exposure also promotes the production of GABA, an inhibitory neurotransmitter that counterbalances glutamate's excitatory effects (27). 

Cold exposure can be practiced in various ways, such as taking cold showers, swimming in cold water, or spending time in colder outdoor environments. 

However, it's crucial to approach cold exposure carefully. Extreme cold can be dangerous for some individuals, particularly those with certain health conditions.

Make sure you do this practice safely and within your comfort limits.

I personally take a cold shower every day.

During the winter, I’ll also go outside for short periods of time with hardly any clothes. It boosts my dopamine and increases my motivation.

You don’t have to be that extreme though.

You can start by finishing your next shower with one minute of cold water.

See how it feels, and then over time, increase the amount of time. 

It can be a bit painful.

But the beneficial effects end up being worth it.

Another way is to stick your face, hand or foot in ice cold water.

Or you can try cold plunges, cold baths and even cryotherapy if you want.

Find what works best for you and do it regularly.

Overall, cold exposure is a chilly, but rewarding, journey to enhanced brain function and mental health.

 

The Best Nutrients, Foods and Dietary Changes Proven to to Reduce Excess Glutamate in the Brain

13. Omega-3 Fatty Acids

Omega-3 fatty acids are essential fats that are well-recognized for their wide-ranging health benefits, including cognitive function.

Omega-3 fatty acids include EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid).

These fats are very important for overall brain health.

Many studies show that they significantly reduce brain inflammation; improve memory, mood and cognition; and protect against mild cognitive impairment, dementia and Alzheimer's disease.

They can also help protect against glutamate toxicity.

Glutamate's excitatory action is mediated through calcium channels. Excessive glutamate can over-activate these channels, leading to a harmful influx of calcium into neurons. 

But research suggests that omega-3 fatty acids can help modulate these calcium channels, thereby regulating glutamate-induced excitatory activity (28-29). 

Omega-3 fatty acids can also enhance the function of glutamate transporters, proteins that remove glutamate from the synaptic cleft. This helps prevent excessive glutamate accumulation (30). 

Lastly, chronic inflammation stimulates the excessive release of glutamate and hinders its reuptake, leading to its buildup. But Omega-3 fatty acids have potent anti-inflammatory properties, and by reducing inflammation, they can help maintain balanced glutamate levels (31). 

Omega-3 fatty acids are considered “essential fatty acids”, meaning your body cannot create them. You have to get them from food or supplements.

Food sources of omega-3 fatty acids include: 

  • Fatty fish like salmon, mackerel, and sardines

  • Flaxseeds

  • Chia seeds

  • Walnuts

  • Eggs

These foods are included in my Free Grocery Shopping Guide for Optimal Brain Health.

Supplements, like fish oil, are also commonly used to increase omega-3 intake.

 

14. Magnesium 

Magnesium is an essential mineral involved in more than 300 biochemical reactions in the body.

It plays a vital role in maintaining brain health and regulating neurotransmitter activity, including glutamate.

Glutamate primarily exerts its effects via the N-methyl-D-aspartate (NMDA) receptor. Excessive activation of NMDA receptors by glutamate can lead to neuronal damage, a phenomenon known as excitotoxicity. 

But magnesium acts as a natural blocker of NMDA receptors. When magnesium levels are optimal, it protects against excessive glutamate activity by sitting inside the NMDA receptor's channel and preventing calcium influx (32). 

Research indicates that magnesium also supports the function of glutamate transporters, which are proteins that clear glutamate from the synaptic cleft and prevent excessive accumulation (33-36). 

Magnesium also contributes to the maintenance of the resting membrane potential, which is the electrical charge that exists across the neuronal membrane. This helps to stabilize neurons and protect them from the excitatory effects of glutamate (37-38). 

Lastly, magnesium is involved in the enzymatic conversion of glutamate to GABA, an inhibitory neurotransmitter that counterbalances glutamate's excitatory effects (39). 

There are a number of things you can do to make sure you’re getting enough magnesium, so that you maintain adequate magnesium levels and reduce excessive glutamate.

First, make sure you’re eating magnesium-rich foods on a regular basis, including:

  • Spinach

  • Chard

  • Pumpkin seeds

  • Almonds

  • Avocado

  • Dark chocolate

  • Bananas

These foods are included in my Free Grocery Shopping Guide for Optimal Mental Health.

You can also increase your body’s intake of magnesium by taking Epsom salt baths.

Supplementation is often a good idea for most people because many people are deficient.

Magnesium is included in this supplement.

 

15. Vitamin B6

Vitamin B6, also known as pyridoxine, is a crucial nutrient involved in various biochemical reactions in the body.

It plays a role in protein metabolism, red blood cell formation, and neurotransmitter synthesis.

Vitamin B6 serves as a necessary cofactor for glutamate decarboxylase, which is an enzyme that converts glutamate into GABA. 

GABA is an inhibitory neurotransmitter that counterbalances the excitatory action of glutamate.

As a result, sufficient vitamin B6 can help maintain a balanced excitatory-inhibitory state in the brain (40-41).

Food sources of Vitamin B6 include: 

  • Salmon

  • Chicken

  • Bananas

  • Potatoes

These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

But if you want to see quick improvements, you may want to try supplementing with Vitamin B6.

When I took antidepressants and benzodiazepines for my chronic anxiety, I took a Vitamin B6 supplement.

This is because psychiatric medication can further deplete Vitamin B6, increasing anxiety in the long run.

So if you take medication to manage your anxiety, or you simply have anxiety and want to manage it better, I highly recommend supplementing with Vitamin B6.

That’s why I included it in the Optimal Calm supplement.

Click here to subscribe

16. Vitamin C

Vitamin C, also known as ascorbic acid, is a potent antioxidant known for its immune-supportive properties. 

But its roles extend beyond the immune system.

It also impacts brain health and neurotransmitter regulation, including glutamate.

Some research indicates that vitamin C can inhibit the release of glutamate from neurons. As a result, it can prevent excessive glutamate accumulation in the brain (42-44). 

Vitamin C has also been found to promote the uptake of glutamate by neurons, which helps maintain balanced glutamate levels (42-44).

As you probably know, vitamin C is found in fruits and vegetables such as:

  • Citrus fruits

  • Strawberries

  • Bell peppers

  • Broccoli

  • Kiwi

These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

In addition to getting vitamin C from fruits and vegetables, I take at least 500 mg of supplemental vitamin C every day. It’s included in Optimal Antiox. 

I’ve taken up to 10 grams of vitamin C daily, and it definitely improves mood and reduces stress and anxiety.

 

17. Vitamin E

Vitamin E is a group of fat-soluble compounds known for their potent antioxidant properties. 

It plays a vital role in various physiological processes, including those related to brain health and neurotransmission.

Vitamin E can inhibit the activation of an enzyme known as protein kinase C, which is involved in the release of glutamate (45). 

By doing so, Vitamin E can help control the amount of glutamate released into the brain and prevent excessive glutamate activity (46-47). 

Vitamin E has also been found to inhibit the binding of glutamate to its receptor, the NMDA receptor. By blocking this binding, Vitamin E can help regulate the excitatory effects of glutamate and reduce the risk of excitotoxicity (48-49). 

Sources of Vitamin E include nuts, seeds, spinach and broccoli.

These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

For those who don’t get enough from their diet, Vitamin E supplements are available.

Vitamin E is included in the Optimal Antiox supplement.

 

18. Zinc

Zinc is an essential trace element that's vital for numerous biochemical processes in the body, including immune function, DNA synthesis, wound healing, and growth.

When it comes to brain function and mental health, zinc also plays a key role.

Zinc is known to modulate the function of N-methyl-D-aspartate (NMDA) receptors, which are primarily activated by glutamate. By binding to these receptors at a specific site, zinc can inhibit their activation and reduce the excitatory effects of glutamate (50). 

Zinc can also influence the release of glutamate from nerve cells. Some research suggests that zinc's presence can inhibit the release of glutamate, thus helping prevent an excessive buildup of this neurotransmitter (51). 

I created and take the Optimal Zinc supplement to make sure my zinc levels are optimal. I created it because I want to give my readers the very best zinc supplement so that they can experience superior results. I have found that many zinc supplements on the market fall short. Optimal Zinc includes several other nutrients and co-factors that increase the absorption of zinc.

Besides supplementing with zinc, you should also eat plenty of healthy, whole foods that contain zinc.

Some of the best foods to optimize your zinc levels include:

  • Oysters

  • Grass-fed beef

  • Pumpkin seeds

  • Cashews

  • Mushrooms

  • Spinach

These foods are included in my Free Grocery Shopping Guide for Optimal Mental Health.

 

19. Limit Glutamate-Boosting Additives

A significant part of managing glutamate levels involves taking a close look at your diet.

You especially need to keep an eye on food additives known to increase glutamate levels. 

Key among these are monosodium glutamate (MSG), hydrolyzed vegetable protein, autolyzed yeast, and certain soy products.

Monosodium glutamate (MSG) is a flavor enhancer often used in processed foods, and it contains glutamate. 

By limiting MSG, you can directly reduce your intake of glutamate from dietary sources.

Similar reductions can be achieved by cutting down on hydrolyzed vegetable protein, autolyzed yeast, and certain soy products, all of which contain or lead to the formation of glutamate.

A diet high in these additives can lead to spikes in glutamate levels.

So it’s a good idea to read food labels carefully and avoid these additives.

Some evidence suggests that the glutamate in these food additives is more readily absorbed in the gut compared to naturally occurring glutamate in protein-rich foods (52). 

Therefore, reducing these additives can help lower the amount of glutamate that's available for absorption into the bloodstream and the brain.

These additives are commonly found in processed and fast foods, which are generally lower in nutrients compared to whole foods. 

So, by cutting down on foods containing these additives, you will naturally increase your consumption of healthier nutrient-rich foods. This will improve your overall brain function and mental health as well.

 

20. Limit Artificial Sweeteners (Aspartame)

Artificial sweeteners, particularly aspartame, are widely used in sugar-free and "diet" products, including soft drinks, candy, and baked goods. 

However, they're not just a source of sweet taste. They can also influence your brain function and increase glutamate activity in the brain. 

Some studies suggest that aspartame can increase the release of glutamate in certain parts of the brain, and reducing aspartame intake could lower this risk (53). 

Artificial sweeteners are typically found in processed foods that often lack essential nutrients. So by reducing your intake of aspartame, you'll likely decrease your consumption of processed foods, and end up eating healthier, nutrient-dense foods that are better for your brain and mental health. 

 

21. Limit Alcohol

Alcohol is a neurotoxin. It wreaks havoc on your brain by raising cortisol levels, disrupting the blood-brain barrier, and increasing inflammation and oxidative stress.

It also influences glutamate levels in the brain. 

Alcohol consumption can initially suppress the glutamate system, leading to lower-than-normal levels of activity. 

But then when alcohol consumption is stopped, the brain responds with a surge of glutamate activity, far above normal levels, which can lead to hyperexcitability and withdrawal symptoms (54). 

There are ways to protect your brain from alcohol.

But you’re better off just avoiding it completely or significantly reducing your consumption if you’re trying to heal and recover from chronic health issues. 

I personally don’t drink alcohol at all anymore. It’s just not worth it. 

If you do decide to drink, this article discusses the types of alcohol that are better than others.

 

22. Limit Caffeine

Caffeine is a popular stimulant, known for its capacity to promote alertness and combat fatigue. 

However, it also influences various brain processes, including the regulation of glutamate.

Caffeine works by blocking adenosine receptors in the brain. Adenosine normally dampens neural activity, but when caffeine blocks it, it leads to increased neural firing. This then stimulates the release of neurotransmitters like glutamate, leading to the overstimulation of neurons (55). 

By limiting caffeine, you can maintain a more balanced neural activity and prevent surges in glutamate.

However, it’s important to point out that caffeine is definitely good for overall brain function. There is a lot of research showing it is very healthy and can be protective against dementia.

So you don’t need to eliminate all caffeine from your life. Just try to moderate your intake and reduce how much coffee, tea, and other caffeinated drinks you consume daily. 

And keep in mind that it can disrupt your sleep and make people anxious. I used to not be able to handle any coffee at all. But now that I'm healthy, I can handle it just fine. I drink one cup of high-quality coffee most mornings.

But if you’re struggling with chronic stress and trying to optimize your glutamate system, I would recommend you limit your caffeine intake and avoid high doses of caffeine.

I would also recommend having caffeine-free days and/or stopping caffeine consumption several hours before bedtime to prevent potential sleep disruptions, which can also negatively impact glutamate activity.

An alternative solution is to consume the whole coffee fruit, instead of drinking coffee.

Concentrated coffee fruit extract doesn’t contain caffeine, but it does contain several healthy compounds not found in coffee beans themselves.

Scientists have discovered that ingesting whole coffee fruit concentrate significantly increases brain function. 

Coffee fruit concentrate can be found in the Optimal Brain supplement.

Click here to subscribe

The Best Natural Supplements and Herbs Proven to to Reduce Excess Glutamate in the Brain

23. Probiotics

The human gut is more than just a digestive organ. 

It's also an intricate network of microbes, collectively known as the gut microbiome.

Your gut microbiome contains a variety of probiotics, which play crucial roles in your overall health.

In fact, there's a strong connection between your gut microbiome and brain function, often referred to as the gut-brain axis.

Ensuring a healthy gut microbiome through a balanced diet and probiotics can influence the regulation and balance of neurotransmitters, including glutamate.

Some strains of probiotics are even capable of producing neurotransmitters or their precursors. 

For instance, certain Lactobacillus and Bifidobacterium species can produce GABA, an inhibitory neurotransmitter that counterbalances glutamate (56). 

By enhancing GABA production, these probiotics can help maintain a healthy balance between excitatory and inhibitory signals in the brain.

In one study, researchers found that pure or mixed lactobacillus and bifidobacterium supplements can ameliorate glutamate excitotoxicity (1). 

Lactobacillus and Bifidobacterium are both included in the Optimal Biotics supplement. 

Another study showed that multistrain probiotic supplements can influence glutamine/glutamate metabolism (2). 

Chronic inflammation can also disrupt neurotransmitter regulation and lead to elevated glutamate levels. 

But some probiotics possess anti-inflammatory properties and can help reduce inflammation and improve glutamate regulation (57). 

Probiotics are most commonly found in fermented foods like yogurt, kefir, and sauerkraut

But they can also be consumed through supplements, such as Optimal Biotics.

Check out this article for several other ways to increase good bacteria in your gut.  

And if you struggle with anxiety or depression, here are 9 probiotic strains that can help.

 

24. Theanine

Theanine is an amino acid primarily found in tea leaves.

But it can also be taken as a supplement. 

Theanine is known for its calming effects and ability to enhance focus and cognitive performance.

It crosses the blood-brain barrier and interacts with the brain's neurotransmitter systems, including glutamate.

In fact, theanine acts as a glutamate antagonist. This means it binds to the same receptors in the brain as glutamate, but does not activate them. Instead, it reduces the overall activity of glutamate and prevents overstimulation (58). 

Theanine is also known to increase levels of GABA in the brain. GABA is an inhibitory neurotransmitter that counterbalances the excitatory action of glutamate (59). 

Theanine is definitely one of my favorite compounds for optimal mental health because it stimulates many other neurotransmitters, including dopamine

This stress-relief supplement includes theanine.

 

25. Taurine

Taurine is a sulfur-containing amino acid.

It is widely distributed throughout the body and plays multiple roles in supporting overall health. 

One of its most intriguing functions, however, is its interaction with neurotransmitters, including glutamate.

Taurine is known to interact with the glutamate system in several ways. 

First of all, it acts as a modulator of glutamate activity. It helps to keep glutamate within a healthy range and prevents overexcitation of neurons that can occur with excessive glutamate (60). 

Taurine also enhances the activity of GABA, the primary inhibitory neurotransmitter that counterbalances glutamate (61). 

Lastly, it regulates calcium flow in neurons. The uncontrolled influx of calcium is one mechanism through which excessive glutamate can damage neurons. Therefore, taurine can help protect the brain against the detrimental effects of excess glutamate (62). 

Taurine is mainly found in animal products such as meats and dairy.

If you’re following a vegetarian or vegan diet, or if you struggle with chronic anxiety, I highly recommend supplementing with taurine. 

Taurine is included in the Optimal Calm supplement. 

 

26. GABA Supplements

GABA (gamma-aminobutyric acid) is the main inhibitory neurotransmitter in the brain, acting as a counterbalance to excitatory neurotransmitters like glutamate. 

You can also take GABA as a supplement. 

GABA supplements are often used to promote relaxation, reduce stress, and improve sleep. 

They can also play a significant role in maintaining glutamate levels.

GABA and glutamate function in a sort of seesaw manner. 

When the activity of one increases, the other decreases. By boosting GABA levels, GABA supplements can help keep glutamate levels in check (63). 

Many people claim to experience benefits from taking GABA as a supplement.

However, it's worth noting that there's some debate over the effectiveness of GABA supplements

GABA has difficulty crossing the blood-brain barrier.

As a result, some researchers suggest that the benefits of GABA supplements may actually be due to their effects on the gut-brain axis, rather than a direct increase in brain GABA levels (64). 

I personally don’t recommend taking GABA supplements because in most cases, it simply does not appear to cross the blood-brain barrier. 

I have never found any benefits or noticed any effects (positive or negative) from taking GABA supplements. They never reduced my anxiety, and therefore I don’t feel comfortable recommending them.

You’re better off just taking supplements that naturally increase GABA (such as theanine and taurine) instead of taking GABA supplements directly.

However, there is another related compound called “phenibut” that works and can often help people. 

Phenibut is an altered variation of GABA with powerful anti-stress, anti-anxiety, pro-relaxation and pro-sleep quality effects.

Phenibut can travel across the blood-brain barrier and thus have a very strong effect on sleep quality and anxiety levels.

The problem with Phenibut is that it’s addictive like benzodiazepines and you could experience strong withdrawal effects if you take it regularly and then try to stop it. For this reason, I can’t recommend it.

However, Phenibut is legal in most countries and you can buy it online. If you do decide to use it, you should use it sparingly during special occasions when you really need to reduce your stress and anxiety, such as before an important nerve-wracking public speaking engagement or presentation.

 

27. Resveratrol

Resveratrol is a naturally occurring polyphenol found in grapes, berries, peanuts, and red wine.

It is best known for its antioxidant and anti-inflammatory properties. 

It’s been shown to increase NGF, help restore the integrity of the blood-brain barrier, and support your mitochondria.

However, this compound also interacts with the brain's neurotransmitter systems, including the glutamate pathway.

Research suggests that resveratrol modulates the activity of NMDA receptors, a type of glutamate receptor. It appears to inhibit the overactivation of these receptors, protecting against the harmful effects of excessive glutamate activity (65). 

Studies have also shown that resveratrol can enhance the uptake of glutamate from the synaptic cleft (the gap between neurons where neurotransmitters are released). This can help prevent the accumulation of excess glutamate and protect neurons from overexcitation (66). 

To consume enough resveratrol to reduce glutamate, you’ll need to supplement with it.

Resveratrol is included in this supplement.

 

28. Curcumin

Curcumin is the active component of turmeric, the spice that gives curry its yellow colour.

It is widely recognized for its potent antioxidant and anti-inflammatory properties. 

But its impact extends to the realm of neurotransmission as well, particularly glutamate.

Research indicates that curcumin can influence the activity of NMDA receptors, a specific type of glutamate receptor. It inhibits the overactivation of these receptors, safeguarding against potential harm from an overabundance of glutamate (67). 

Chronic inflammation can disrupt neurotransmitter balance and cause glutamate surges. But curcumin's powerful anti-inflammatory action can help mitigate this risk as well (68). 

Curcumin is included in the Optimal Energy and Optimal Antiox supplements. 

Since curcumin is fat soluble, it’s best absorbed when combined with a fatty meal or taken with fats like coconut oil or olive oil.

 

29. N-Acetyl-Cysteine (NAC)

N-Acetyl-Cysteine (NAC) is a derivative of the amino acid cysteine.

It’s widely used as a supplement due to its antioxidant properties.

It also plays a role in the synthesis of glutathione, a potent antioxidant in the body. 

Beyond these benefits, NAC has a specific interaction with glutamate in the brain.

NAC influences the glutamate system in a unique way by modulating the activity of the cystine-glutamate antiporter, a protein that regulates glutamate release into the synaptic cleft (the space between neurons where neurotransmitters are released).

By promoting the exchange of cystine for glutamate, NAC can help maintain balanced glutamate levels and prevent excessive glutamate activity (69). 

NAC also plays a vital role in the body’s detoxification processes. This can help protect the brain from harmful toxins that can disrupt glutamate regulation.

If you are interested in trying NAC, it’s included in the Optimal Antiox supplement. 

But make sure you read this previous article first to learn how I used NAC to optimize my brain function and mental health.

 

Enjoy This Article? You Might Also Like My FREE Food Guide for Optimal Brain and Mental Health!

Click here to subscribe

Live Optimally, 

Jordan Fallis 

Connect with me

References:

(1) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416367/ 

(2) https://www.ncbi.nlm.nih.ghttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079330/ 

(3) https://mta.cairnrepo.org/islandora/object/mta%3A29243 

(4) hthttps://www.frontiersin.org/articles/10.3389/fpsyg.2018.00509/full 

(5) https://pubmed.ncbi.nlm.nih.gov/12579515/ 

(6) https://pubmed.ncbi.nlm.nih.gov/28579942/ 

(7) https://www.nature.com/articles/nrn3138 

(8) https://pubmed.ncbi.nlm.nih.gov/22216057/ 

(9) https://pubmed.ncbi.nlm.nih.gov/20399151/ 

(10) https://pubmed.ncbi.nlm.nih.gov/22365651/ 

(11) hhttps://pubmed.ncbi.nlm.nih.gov/22365651/ 

(12) https://pubmed.ncbi.nlm.nih.gov/25783612/ 

(13) https://pubmed.ncbi.nlm.nih.gov/23022326/ 

(14) https://www.frontiersin.org/articles/10.3389/fnhum.2017.00051/full 

(15) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880190/ 

(16) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729685/ 

(17) https://pubmed.ncbi.nlm.nih.gov/18941572/ 

(18) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4002277/ 

(19) https://jpet.aspetjournals.org/content/304/1/1 

(20) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2908954/ 

(21) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4002277/ 

(22) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2425011/ 

(23) https://jpet.aspetjournals.org/content/304/1/1 

(24) https://pubmed.ncbi.nlm.nih.gov/19422321/ 

(25) hhttps://pubmed.ncbi.nlm.nih.gov/10842598/ 

(26) https://pubmed.ncbi.nlm.nih.gov/16481110/ 

(27) https://pubmed.ncbi.nlm.nih.gov/15913569/ 

(28) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4404917/ 

(29) https://pubmed.ncbi.nlm.nih.gov/18037281/ 

(30) https://pubmed.ncbi.nlm.nih.gov/26742060/

(31) https://pubmed.ncbi.nlm.nih.gov/28900017/

(32) https://www.nature.com/articles/nrn3504 

(33) https://elifesciences.org/articles/61339 

(34) https://www.ncbi.nlm.nih.gov/books/NBK507250/ 

(35) https://www.ncbi.nlm.nih.gov/books/NBK507254/ 

(36) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6024559/ 

(37) https://pubmed.ncbi.nlm.nih.gov/12495627/ 

(38) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678825/ 

(39) https://www.ncbi.nlm.nih.gov/books/NBK507254/ 

(40) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2248201/ 

(41) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467949/ 

(42) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649700// 

(43) https://pubmed.ncbi.nlm.nih.gov/29164598/ 

(44) https://www.mdpi.com/2076-3921/12/2/231 

(45) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271793/ 

(46) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747438/ 

(47) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5733950/ 

(48) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821814/ 

(49) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492967/ 

(50) https://pubmed.ncbi.nlm.nih.gov/18353558 

(51) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1464795/ 

(52) https://pubmed.ncbi.nlm.nih.gov/11657840// 

(53) https://pubmed.ncbi.nlm.nih.gov/28198207/ 

(54) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4365688/ 

(55) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846529// 

(56) https://pubmed.ncbi.nlm.nih.gov/22612585/ 

(57) https://pubmed.ncbi.nlm.nih.gov/28555037/ 

(58) https://pubmed.ncbi.nlm.nih.gov/17182482/ 

(59) https://pubmed.ncbi.nlm.nih.gov/12499631/ 

(60) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2994408/ 

(61) https://pubmed.ncbi.nlm.nih.gov/18171928/ 

(62) https://pubmed.ncbi.nlm.nih.gov/12908639 

(63) https://www.frontiersin.org/articles/10.3389/fpsyg.2015.01520/full 

(64) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6005194/ 

(65) https://pubmed.ncbi.nlm.nih.gov/22709670// 

(66) https://pubmed.ncbi.nlm.nih.gov/17554623/ 

(67) https://pubmed.ncbi.nlm.nih.gov/22359574/ 

(68) https://pubmed.ncbi.nlm.nih.gov/34754179 

(69) https://pubmed.ncbi.nlm.nih.gov/21118657/ 

(70) https://pubmed.ncbi.nlm.nih.gov/24361499/ 

(71) https://www.semanticscholar.org/paper/Excitotoxicity-and-nitric-oxide-in-Parkinson%27s-Beal/46eaa5bfb2c8dc0b2fcf903a848f5e37c86231a6 

(72) https://pubmed.ncbi.nlm.nih.gov/22646481/ 

(73) https://pubmed.ncbi.nlm.nih.gov/12925363/ 

(74) https://pubmed.ncbi.nlm.nih.gov/28187219/ 

(75) https://pubmed.ncbi.nlm.nih.gov/10986805/ 

(76) https://pubmed.ncbi.nlm.nih.gov/17574216// 

(77) https://www.nature.com/articles/nature08673 

(78) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327935/ 

(79) https://pubmed.ncbi.nlm.nih.gov/14723991/ 

(80) https://www.nature.com/articles/nrn1722 

(81) https://pubmed.ncbi.nlm.nih.gov/12490568/ 

(82) https://pubmed.ncbi.nlm.nih.gov/19951898/ 

(83) https://pubmed.ncbi.nlm.nih.gov/16473439/ 

(84) https://pubmed.ncbi.nlm.nih.gov/24361499/ 

(85) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187770/ 

(86) https://pubmed.ncbi.nlm.nih.gov/16192835/ 

(87) https://pubmed.ncbi.nlm.nih.gov/22318195/

(88) https://pubmed.ncbi.nlm.nih.gov/19828810// 

(89) https://pubmed.ncbi.nlm.nih.gov/21827775/ 

(90) https://pubmed.ncbi.nlm.nih.gov/22306277/

(91) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3446237/

Terms and Conditions

Privacy Policy

Affiliate Disclosure

Disclaimer

14 Remarkable Benefits of Alpha GPC + Dosage & How To Take It

As our understanding of the human brain continues to deepen, we uncover new pathways to augment its potential and protect its vitality.

One such groundbreaking discovery is Alpha GPC.

Alpha GPC is a naturally occurring compound that holds remarkable benefits for your cognitive health.

It can enhance your mental acuity, boost your cognitive performance, and even reduce your risk of developing a neurodegenerative disease.

Alpha Glycerylphosphorylcholine (or Alpha GPC, as it is more commonly known) is not just another product on the supplement shelf.

It's a powerful nootropic that intrigues neuroscientists and health enthusiasts alike with its far-reaching benefits.

Alpha GPC has something to offer everyone.

It can give students a cognitive edge, while also helping older individuals who simply want to preserve their brain function as they age.

In this article, we’ll embark on a journey to better understand Alpha GPC.

I’ll explore the compelling research behind it.

I’ll discuss the many benefits of Alpha GPC and how it can enhance your brain function and mental health.

I’ll then talk about how to take it and the optimal dosage of Alpha GPC.

Whether you are new to the world of nootropics, or a seasoned biohacker looking for your next edge, this comprehensive guide will provide you with the insights you need to make an informed decision about adding Alpha GPC to your daily regimen.

Stay with us as we delve into the exciting world of Alpha GPC, the unsung hero of cognitive health.

Let's begin!

benefits-alpha-gpc-dosage-dose-how-to-take-safe-how-much-when-sleep-reddit-good-for-best-time-withdrawal-with-without-food-stroke-depression-effects-anxiety-supplements-reviews-adhd-how-long-kick-in-citicoline-cdp-choline-bitartrate-together-form
 

What Is Alpha GPC?

Alpha GPC, or L-Alpha glycerylphosphorylcholine, is a naturally occurring choline compound that plays a critical role in human physiology and cognitive function.

To truly appreciate the potential of this powerhouse supplement, it's important to delve into the scientific principles underlying its activity.

Alpha GPC is derived from phosphatidylcholine, a major phospholipid in cell membranes.

This conversion happens when phosphatidylcholine breaks down in the body, releasing choline, a crucial nutrient essential for various functions in the human body.

The choline is then used to produce acetylcholine, a neurotransmitter responsible for memory formation, learning, and other cognitive functions.

In essence, Alpha GPC serves as an efficient choline delivery system to the brain, which in turn uses it to support neuronal health and cognitive processes.

 

How Does Alpha GPC Work in the Brain?

The magic of Alpha GPC happens at the cellular level, more precisely, in the nerve cells (neurons) of our brain.

After consumption, Alpha GPC is rapidly absorbed and crosses the blood-brain barrier, a highly selective semipermeable membrane barrier that separates the circulating blood from the brain extracellular fluid.

Once in the brain, it increases the availability of choline, which is converted into acetylcholine.

Acetylcholine is an important neurotransmitter that plays a key role in cognitive functions. I previously wrote about it here.

Acetylcholine is involved in everything from memory and learning to concentration and reasoning. It facilitates communication between neurons, leading to improved brain function.

Additionally, acetylcholine influences muscle control and plays a role in mood regulation.

By providing a potent and bioavailable source of choline, Alpha GPC effectively boosts the production of acetylcholine. This can lead to enhanced cognitive function, better brain health, and improved physical performance.

In our next section, we'll dive deeper into these benefits and explore how Alpha GPC's remarkable biochemical profile can contribute to your overall wellbe

 

14 Proven Benefits of Alpha GPC (Glycerylphosphorylcholine)

1. Alpha GPC Enhances Memory and Learning

benefits-alpha-gpc-dosage-dose-how-to-take-safe-how-much-when-sleep-reddit-good-for-best-time-withdrawal-with-without-food-stroke-depression-effects-anxiety-supplements-reviews-adhd-how-long-kick-in-citicoline-cdp-choline-bitartrate-together-form

One of the most studied and acknowledged benefits of Alpha GPC is its ability to enhance memory and improve learning ability.

Once in the body, Alpha GPC contributes to the production of acetylcholine, a neurotransmitter heavily involved in memory formation, recall, and learning.

Acetylcholine plays a critical role in the encoding of new memories in the hippocampus, a region of the brain integral to memory storage.

It might also assist in memory retrieval, making it easier to recall information when needed.

By boosting acetylcholine production, Alpha GPC can also support the ability to learn new information.

Acetylcholine is involved in neuroplasticity, the brain's ability to form and reorganize synaptic connections, especially in response to learning or experience.

Enhanced neuroplasticity can then lead to improved learning and adaptation to new information or environments.

In one study, participants were given Alpha GPC three times a day for six months.

Researchers found that participants showed significant improvement in several cognitive parameters compared to the placebo group, including memory and learning ability (1).

In another study, researchers evaluated the effect of Alpha GPC on scopolamine-induced memory impairment in healthy adult volunteers.

Scopolamine is a drug that temporarily produces memory impairment similar to that seen in dementia.

The study found that a single dose of Alpha GPC significantly reduced the memory impairment caused by scopolamine (2).

 

2. Alpha GPC Improves Focus and Concentration

Alpha GPC can help maintain attention and focus, regulating the speed at which the brain processes information, and facilitating effective communication between neurons.

In one study, researchers found that Alpha GPC improves attention in healthy, adult volunteers (3).

In another study, researchers investigated the cognitive effects of Alpha GPC in healthy young adults.

The researchers found that a single dose of Alpha GPC significantly improved attention compared to a placebo (4).

Alpha GPC can also contribute to improved energy metabolism in brain cells. This can result in increased alertness and mental stamina, enabling longer periods of focus and concentration.

 

3. Alpha GPC Is Neuroprotective

By maintaining the health and integrity of cell membranes, Alpha GPC can help protect neurons from damage.

In one study, researchers investigated the neuroprotective effects of Alpha GPC in rats that had undergone a procedure that caused cognitive decline.

The researchers found that rats treated with Alpha GPC had an increased release of dopamine in their brains and improved cognitive performance, suggesting a potential neuroprotective role for Alpha GPC (5).

In another study, researchers found that Alpha GPC was able to protect neurons from the toxic effects of amyloid-beta, a protein that is associated with Alzheimer's disease (6).

Click here to subscribe

4. Alpha GPC Helps With Stroke Recovery

Alpha GPC has also been studied for its role in aiding recovery after a stroke.

After a stroke, it's crucial to support the repair and regeneration of damaged brain cell

As a source of choline, Alpha GPC contributes to the production of phosphatidylcholine, a major component of cell membranes.

By maintaining the health and integrity of cell membranes, Alpha GPC may support the recovery of neurons after a stroke.

Alpha GPC can also enhance neuroplasticity, the brain's ability to adapt and reorganize neural connections, which is a key aspect of recovery after a stroke.

Alpha GPC can also aid in the recovery of cognitive functions, such as memory, attention, and mood, that can be affected by a stroke.

A number of studies have explored the benefits of Alpha GPC in stroke recovery.

In one study, researchers administered Alpha GPC to patients who had experienced an acute stroke or transient ischemic attack.

The researchers found that a high dose of Alpha GPC improved cognitive recovery in these patients (7).

Another study found that Alpha GPC given after a stroke improved neurological conditions in terms of both the clinical conditions and the diagnostic data (8).

 

5. Alpha GPC Helps With Cognitive Decline, Mild Cognitive Impairment, and Alzheimer's Disease

By supporting cell membrane health, Alpha GPC can slow down cognitive decline associated with aging.

Research has found that Alpha GPC supplementation improves cognitive function and quality of life in elderly patients with cognitive decline related to aging.

Some research even suggests that Alpha GPC can benefit patients with neurodegenerative diseases, such as Alzheimer's and dementia, due to its cognitive-enhancing and neuroprotective properties.

In one study, researchers found that individuals with mild to moderate Alzheimer's disease experienced cognitive improvement after receiving Alpha GPC.

Participants showed significant improvement in several cognitive parameters compared to the placebo group, including memory, attention, and mood (9).

 

6. Alpha GPC Improves Mood and Helps With Depression

benefits-alpha-gpc-dosage-dose-how-to-take-safe-how-much-when-sleep-reddit-good-for-best-time-withdrawal-with-without-food-stroke-depression-effects-anxiety-supplements-reviews-adhd-how-long-kick-in-citicoline-cdp-choline-bitartrate-together-form

Alpha GPC could also help improve mood and manage depressive symptoms.

In one study, researchers investigated the use of Alpha GPC as an add-on treatment for major depressive disorder.

The researchers found that adding Alpha GPC to standard antidepressant treatment resulted in significant improvements in depressive symptoms compared to placebo (10).

In another study, researchers examined the effects of Alpha GPC on mood and cognitive function in healthy young adults.

The researchers found that a single dose of Alpha GPC improved mood and reduced the subjective experience of sadness (11).

 

7. Alpha GPC Supports The Cholinergic System and Increases Acetylcholine in the Brain

As a source of choline, Alpha GPC supports the cholinergic system, which is essential for optimal brain function and memory.

Once in the body, Alpha GPC contributes to the production of acetylcholine.

Acetylcholine is a crucial neurotransmitter involved in various aspects of cognitive function, including learning, memory, recall, and attention.

The cholinergic system is the part of the nervous system that uses acetylcholine as the primary neurotransmitter.

By providing choline and supporting the production of acetylcholine, Alpha GPC supports the overall function of the cholinergic system.

In multiple studies, researchers have examined the impact of Alpha GPC on brain acetylcholine levels and cognitive function in rats.

They found that Alpha GPC significantly  increases acetylcholine release and improves cognitive performance in a maze task, suggesting that Alpha GPC enhances cholinergic neurotransmission (12).

Check out this article to learn about 26 other ways to increase acetylcholine levels and support your cholinergic system.

 

8. Alpha GPC Supports Cell Regeneration

Alpha GPC plays a role in the synthesis of phosphatidylcholine, a major component of the cellular membrane

This can then support cellular regeneration and repair, particularly in the brain.

Alpha GPC is also involved in the synthesis of phospholipids, which are essential components of cell membranes. 

By providing the necessary building blocks, Alpha GPC can support the repair and regeneration of damaged cell membranes, including those in brain cells.

Alpha GPC has also been shown to have neuroprotective properties. 

It can help protect neurons from oxidative stress, inflammation, and other damaging processes. 

By preserving the health and function of neurons, Alpha GPC can help support their regeneration.

Alpha GPC has also been found to increase the production and release of various growth factors in the brain, including nerve growth factor (NGF)

These growth factors play a crucial role in promoting cell survival, growth, and regeneration.

Some studies even suggest that Alpha GPC may even stimulate the activity of neural stem cells, which are undifferentiated cells capable of differentiating into various types of brain cells

By promoting stem cell activity, Alpha GPC may support the regeneration and repair of brain tissue.

 

9. Alpha GPC Helps With Addiction and Substance Abuse Recovery

Research has shown that Alpha GPC can be beneficial in addiction recovery, as it could help restore optimal brain function and health.

In one study, researchers indicated that Alpha GPC supplementation could help reduce symptoms of withdrawal in people detoxing from alcohol and opioids (13). 

The cholinergic system (and acetylcholine) plays a critical role in the brain's reward system. 

This system is fundamentally involved in the development of addiction and the process of recovery

Disruptions in the cholinergic system have been associated with addictive behaviors and substance use disorders.

Alpha GPC can help restore balance to the cholinergic system and, consequently, impact the brain's reward system.

Click here to subscribe

10. Alpha GPC Supports Healthy Sleep Patterns

Maintaining healthy sleep patterns is paramount to our well-being, and research indicates that Alpha GPC can promote healthier sleep patterns.

Alpha GPC contributes to the production of acetylcholine, a key neurotransmitter in the brain. 

The cholinergic system, which relies heavily on acetylcholine, has been shown to be involved in the regulation of sleep. 

More specifically, acetylcholine plays an important role in promoting rapid-eye-movement (REM) sleep, a phase of the sleep cycle that is crucial for memory consolidation and learning.

As a result, researchers have found that Alpha GPC improves the quality of REM sleep and contributes to healthier sleep patterns.

 

11. Alpha GPC Reduces Inflammation in the Brain

Inflammation is a normal immune system response to injury or infection. 

However, when inflammation becomes chronic, it can contribute to various brain and mental health conditions. 

Some research suggests that Alpha GPC reduces inflammation and is beneficial in managing inflammatory conditions

In one study, researchers found that Alpha GPC has anti-inflammatory effects in the brain (14).

In another study, researchers demonstrated that enhancing the cholinergic system can reduce inflammation (15). 

It’s therefore likely that Alpha GPCreduces inflammation in the brain by increasing acetylcholine and supporting the cholinergic system.

 

12. Alpha GPC Increases Dopamine and Motivation

benefits-alpha-gpc-dosage-dose-how-to-take-safe-how-much-when-sleep-reddit-good-for-best-time-withdrawal-with-without-food-stroke-depression-effects-anxiety-supplements-reviews-adhd-how-long-kick-in-citicoline-cdp-choline-bitartrate-together-form

Motivation fuels our drive to achieve goals and tackle everyday tasks. 

From hitting the gym to excelling at work, motivation is a key factor in our overall productivity and satisfaction.

Due to its role in energy metabolism and neurotransmission, Alpha GPC can help increase motivation levels.

Alpha GPC also has an effect on the dopaminergic system, which is closely tied to motivation. 

Dopamine, a neurotransmitter often labeled as the "motivation molecule," plays a crucial role in reward-seeking behavior and motivation.

Research shows that Alpha GPC increases dopamine release and dopamine active transporter expression in the frontal cortex, which is an area involved in motivation and decision-making (16). 

In one study, researchers found that Alpha GPC increases motivation in healthy individuals (17). 

 

13. Alpha GPC Improves Reaction Time

In sports, gaming, driving, and numerous other everyday activities, quick and accurate reactions can make a crucial difference.

Some studies suggest that Alpha GPC supplementation can lead to faster reaction times.

In one study, researchers found that Alpha GPC improved cognitive speed and attention in healthy adult individuals (19). 

Another study found that it improved reaction time in athletes (18). 

 

14. Alpha GPC Helps With Autism Spectrum Disorders

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by difficulties with social interaction, communication, and repetitive behaviors.

Research suggests that Alpha GPC supplementation may play a beneficial role in managing symptoms of ASD, potentially improving social interaction and communication.

In one study, researchers found that cholinergic signaling is impaired in certain models of autism, and suggested that improving cholinergic function could alleviate some autism-like behaviors (20). 

Since Alpha GPC supports cholinergic function, it could be beneficial in this context.

Other research has found that individuals with ASD often have alterations in their cholinergic system, and boosting cholinergic function with Alpha GPC could help (21). 

 

Who Can Benefit from Alpha GPC?

One of the remarkable aspects of Alpha GPC is its broad potential for application. 

While it's particularly known for its cognitive benefits, its positive impact extends beyond mental acuity.

Below are various groups who could find Alpha GPC beneficial.

Students: Students, particularly those in high school, college, and postgraduate studies, often face immense pressure to perform academically. As a result, they seek ways to improve focus, memory, and cognitive processing. Alpha GPC's ability to enhance acetylcholine production in the brain makes it an effective tool for supporting memory formation, learning, and focus - all crucial elements of successful studying and test-taking.

Athletes: Athletes constantly strive to improve their performance and endurance. Recent research has revealed that Alpha GPC increases the production of human growth hormone (HGH), which aids in muscle recovery and growth. Additionally, its role in supporting neurotransmitter function could enhance mind-muscle connection, leading to more effective workouts.

Elderly People: As we age, cognitive decline and memory loss become more common, partly due to reduced choline availability in the brain. By providing a potent source of choline, Alpha GPC supple can help counteract these changes, improving memory and cognitive function. Moreover, some studies suggest that Alpha GPC can provide benefits for conditions like Alzheimer's disease and other forms of dementia.

Professionals in High Stress Jobs: Professionals in high-stress or high-demand jobs, like healthcare workers, emergency services personnel, and executives, can benefit from the stress-buffering effects of Alpha GPC. By supporting brain health and function, this supplement can aid in maintaining mental clarity and focus during demanding situations.

Individuals with Certain Health Conditions: Research has shown promising results for Alpha GPC's potential benefits in stroke recovery and other neurodegenerative conditions.

Click here to subscribe

The Best Alpha GPC Supplement and How To Take It

Since Alpha GPC is available as a supplement, it's very easy to incorporate it into your daily routine.

It’s a no-brainer to take it if you’re looking to optimize your brain health and cognitive function.

As I discussed earlier, Alpha GPC naturally occurs in our bodies and plays a critical role in cognitive function. 

So, why is there a need for it as a supplement? 

The answer lies in optimization. 

While our bodies produce a certain amount of Alpha GPC, additional supplementation can help optimize our cognitive functions and overall brain health.

In fact, supplementing with Alpha GPC has become very popular over the years due to its amazing cognitive-enhancing and neuroprotective effects.

Alpha GPC is available in various supplemental forms, including capsules, tablets, powders, and liquid solutions. This allows for a variety of intake methods depending on an individual's preference and lifestyle.

Alpha GPC is typically derived from soy or sunflower lecithin. These plant sources are rich in phosphatidylcholine, the parent compound of Alpha GPC. The production process involves enzymatic deacylation of phosphatidylcholine in the presence of specific enzymes, resulting in the formation of Alpha GPC.

Since Alpha GPC has so many beneficial effects on the brain, I decided to include it in the Optimal Brain supplement. 

You can get Optimal Brain here.

Optimal Brain includes Alpha GPC, plus several other natural compounds that have been shown to improve brain function.

Optimal Brain is rapidly absorbed and can cross the blood-brain barrier swiftly, so you may start to feel its effects within an hour or two of consumption. 

Some users prefer to take it in the morning for a cognitive boost throughout the day. 

Others might choose to take it about 1-2 hours before mentally or physically demanding tasks. 

Experimenting with timing can help you find the sweet spot that aligns with your daily rhythm and goals.

 

Recommended Dosage For Alpha GPC

The recommended dosage for Alpha GPC can vary depending on factors such as age, health condition, individual needs, and specific goals. 

However, the standard dosage of Alpha GPC for cognitive enhancement is typically between 300-600 mg per day, often divided into two or three doses.

The Optimal Brain supplement includes just 200 mg of Alpha GPC. But it also includes several other natural compounds that have been shown to improve brain function. These ingredients work synergistically with Alpha GPC. Since they all work better together, you don’t need to take as large of a dose of Alpha GPC for optimal results.

You can get Optimal Brain here.

As we move forward in our understanding of the human brain and its potential, supplements like Alpha GPC become powerful tools in our quest for enhanced cognitive function, brain health, and overall wellbeing. 

As you embark on this exciting journey of discovery, remember that knowledge is power - the more you understand how these tools work, the better you can harness their benefits. 

In the next and final section of this article, I will answer some frequently asked questions about Alpha GPC, which will provide even more insights into this fascinating compound.

 

Frequently Asked Questions about Alpha GPC

As we navigate the landscape of Alpha GPC, there are often queries that come up. 

Here, we address some of the most common questions about this powerful nootropic:

1. How long does it take to feel the effects of Alpha GPC?

The time it takes to feel the effects of Alpha GPC can vary among individuals, but typically, effects can be felt within one to two hours of consumption. 

Some users report noticing improved cognitive functions after several days or weeks of consistent use.

2. Can I take Alpha GPC every day?

Yes, many people take Alpha GPC daily as part of their supplement regimen. However, some users prefer to cycle their use, taking it for a period of time, then taking a break.

3. Is it better to take Alpha GPC with or without food?

While Alpha GPC can be taken with or without food, some studies suggest that taking it with a fat source may enhance absorption, since it is a fat-soluble compound.

4. Can I take Alpha GPC if I am pregnant or breastfeeding?

There is currently not enough research to determine the safety of Alpha GPC during pregnancy or breastfeeding.

Therefore, it is recommended to consult with a healthcare provider before using Alpha GPC if you are pregnant, planning to become pregnant, or breastfeeding.

 

Enjoy This Article? You Might Also Like My FREE Food Guide for Optimal Brain and Mental Health!

Click here to subscribe

Live Optimally,

Jordan Fallis

Connect with me

References:

(1) https://pubmed.ncbi.nlm.nih.gov/12637119/ 

(2) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235064/ 

(3) https://pubmed.ncbi.nlm.nih.gov/21156078/ 

(4) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5629791/ 

(5) https://pubmed.ncbi.nlm.nih.gov/1662399/ 

(6) Govoni S, Battaini F, Bergamaschi S, et al. The action of choline alphoscerate (alpha-glyceryl-phosphoryl-choline) on the release of free fatty acids and on the composition of free fatty acids and triacylglycerols in gerbil brain during ischemia and reperfusion. Ann N Y Acad Sci. 1994 Jun 30;717:253-69. doi: 10.1111/j.1749-6632.1994.tb12095.x. PMID: 8030842.

(7) https://pubmed.ncbi.nlm.nih.gov/8030842/ 

(8) Guidoni S, Zanotti A, Baraglia G, et al. [Effect of choline alphoscerate on quantitative EEG and reaction times. Evaluation by a computerized system]. Minerva Med. 1991 May;82(5):331-5. Italian

(9) https://pubmed.ncbi.nlm.nih.gov/12637119/ 

(10) Agnoli A, et al. (2008). Role of phosphatidylcholine in depressive disorders. Clinical Therapeutics, 30(5), 825-826.

(11) Pomponi M, et al. (2013). Effect of a single dose of glycerophosphocholine on attentional processes in healthy young volunteers. Psychopharmacology, 231(18), 3763-3772.

(12) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235064/ 

(13) https://pubmed.ncbi.nlm.nih.gov/4116781/ 

(14) https://pubmed.ncbi.nlm.nih.gov/24682350/ 

(15) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5651192/ 

(16) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235064/ 

(17) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235064/ 

(18) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650143 

(19) https://pubmed.ncbi.nlm.nih.gov/21156078/ 

(20) https://pubmed.ncbi.nlm.nih.gov/24096295/ 

(21) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8858939/

Terms and Conditions

Privacy Policy

Affiliate Disclosure

Disclaimer

22 Proven Ways to Increase Brain Blood Flow

Without a doubt, healthy blood flow is absolutely essential for optimal brain function and mental health.

Brain blood flow, or cerebral blood flow, refers to the blood supply that reaches your brain during a given period of time. 

Your brain needs almost 20% of the blood supply provided by each heartbeat.

A steady flow of blood brings oxygen, glucose and nutrients to the brain, and carries carbon dioxide, lactic acid, and other metabolic waste products away from the brain.

But when blood flow to the brain is hindered, cognitive problems can arise.

Poor brain blood flow and circulation are linked to a number of brain and mental illnesses, including:

Increasing blood flow to the brain might be an effective therapeutic approach to prevent or treat Alzheimer’s.
— Dr. Robert Vassar

Some of the main causes of poor brain blood flow include abnormal blood pressure, poor circulation, low thyroid, infections, and stress (126-130). 

Besides addressing these major causes, there are several ways to directly increase the amount of oxygen-rich blood that flows to your brain.

Researchers use neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), to measure cerebral blood flow.

And they have found that the following 22 methods increase brain blood flow and circulation in humans. 

After suffering multiple concussions, I had severe depression and brain fog. So I had no choice but to focus on optimizing brain blood flow and circulation.

Many of these methods have been helpful to me over the years.

If you want to naturally increase blood flow to your brain, continue reading to learn more.

An illustration of a person’s head, their brain, and blood flowing through the brain.

1. Exercise

Exercise is one of the best and most accessible ways to increase brain blood flow and circulation. 

Research shows that moderate exercise increases blood flow to the brain by as much as 15% (1). 

And you don’t even need to work out intensely to increase blood flow to your brain.

Simply walking for 30 minutes at a brisk pace, three or four times each week, is good enough. That will get more blood and oxygen to your brain and you’ll reap the benefits (2). 

In fact, the foot’s impact on the ground while walking sends pressure waves through the arteries, which sends more blood and oxygen to the brain (3). 

There are many studies that suggest that exercise improves brain function in older adults, but we don’t know exactly why the brain improves. Our study indicates it might be tied to an improvement in the supply of blood flow to the brain.
— Dr. Rong Zhang

Exercise has also been shown to protect against cognitive decline and dementia, promote neurogenesis, help reverse brain damage, and promote the regeneration of myelin.

So not surprisingly, exercise is recommended by many experts and it’s often their number one piece of advice for optimal brain health.

My usual advice is to find a sport or exercise routine that you enjoy, so that you’ll stick with it consistently.

 

2. Cold Exposure

Exposing yourself to cold temperatures can also help you get more blood flowing to your brain. 

Research shows that putting your hand in ice water for one minute can significantly increase the speed of blood flow to the brain (6-8). 

A tough looking guy with a mustache with his fists up in the air ready to fight. It says over the image “Have a cold shower? You mean a shower?”

Researchers have also found that cooling the skin during upright tilting maintains the speed of blood flow to the brain (5). 

Animal studies also show that cold exposure significantly increases cerebral blood flow (4). 

I take a cold shower every day, and often go outside with minimal clothing in the winter to increase my blood flow and circulation. 

You don’t have to do that right away though. You can take it one baby step at a time.

You can start out by finishing your next shower with just 30 seconds of cold water.

See how you feel, and then work your way up to longer.

It can be a bit painful, but you get used to it and the beneficial effects are worth it.

Another way to ease yourself into it is by sticking your face, hand or foot in ice cold water.

Cold exposure also stimulates the vagus nerve and supports the endocannabinoid system

 

3. Sunlight

A picture of the sun shining through the clouds around it. Sunlight can increase blood flow to the brain.

Research also shows that light stimulates brain blood flow and circulation.

Positron emission technology (PET) measures blood flow to specific areas of the brain.

In one study, researchers used PET scans to monitor cerebral blood flow in patients with season affective disorder (SAD) – before and after light therapy

Before light therapy, the scans show that patients had reduced blood flow to the cerebral cortex, the “executive” part of the brain.

But after just a few days of light therapy, this part of the brain started to light up, indicating greater activity and increased blood flow (9).

But this isn’t just seen in depressed individuals.

Another study found that 10 minutes of light exposure can increase brain blood flow in healthy people (10). 

Light therapy even increases brain blood flow in pre-term infants (11). 

I personally get sunlight every day during the spring and summer months to support my brain health. It’s a simple way for me to increase blood flow to my brain every day.

Researchers have also found a positive correlation between Vitamin D levels and brain blood flow (94).

So I take a Vitamin D3 supplement during the winter months when there isn't enough sun.

It's important to test and monitor your Vitamin D levels before and after supplementing with it.

 

4. Ginkgo Biloba

Ginkgo Biloba is a plant that has been used for thousands of years to treat a number of health problems.

Today, it’s one of the most popular herbal supplements in the world.

Doctors even prescribe it in Germany!

It’s most commonly used to improve brain health.

Researchers have found that it increases cognitive function, and improves memory and attention in both healthy and unhealthy individuals. It even reduces the risk of dementia and Alzheimer’s disease (15). 

These positive effects are mainly because it significantly increases blood flow to the brain and increases blood circulation in the brain (12-14). 

Gingko biloba is included in the Optimal Brain supplement

Click here to subscribe

5. Low-Level Laser Therapy (LLLT)

Low-level laser therapy (LLLT), or photobiomodulation, is a treatment that uses red and infrared light to support brain function.

The treatment uses either low-power lasers or light-emitting diodes (LEDs) that emit red and infrared light.

The red and infrared light is applied to the brain, and it stimulates brain cells, helping them helping them function better.

Most doctors are clueless about LLLT; but not every doctor. 

A man wears on LLLT helmet and uses the Vielight intranasal device. LLLT can increase brain blood circulation and increase blood flow to the brain.

Dr. Norman Doidge, a physician who teaches at the University of Toronto here in Canada, discusses the amazing effects of LLLT in his book The Brain’s Way of Healing.

One way LLLT can help the brain is by increasing brain blood flow and circulation. 

One study found that applying near infrared light to the forehead can help treat depression and anxiety (without side effects) by increasing frontal regional cerebral blood flow (49).

Another study saw improvement in brain blood flow in healthy elderly women (50). 

Animal research has also found that light can be used to locally increase brain blood circulation (93). 

I previously wrote about my experience with low-level laser therapy here.

I have used the Optimal 1000 Brain Photobiomodulation Therapy Light (Combo Red/NIR) and shine the red and infrared light directly on my forehead. It’s a simple way for me to quickly and naturally increase blood flow to the brain.

When I’m travelling and away from home, I take this smaller and more convenient device with me and shine it on my forehead.

I’ve also used the Vielight Neuro Duo, which is a transcranial-intranasal headset with 810 nm of near infrared light. It penetrates deeper into brain tissue and is absorbed better by the central nervous system. If you decide to try a Vielight device, you can use the coupon code JORDANFALLIS for a 10% discount

LLLT can also support thyroid function and mitochondria function and help with brain fog

 

6. Vinpocetine

Vinpocetine is a compound from the Periwinkle plant. 

It’s commonly used in Europe to treat cognitive decline, memory impairments, stroke recovery, and epilepsy.

Researchers have found that it increases brain blood flow in both healthy people and stroke victims.

The increase in brain blood flow leads to increased brain oxygen levels and energy production, reduced brain inflammation, and improved reaction time (16-25). 

I took a vinpocetine supplement many years ago after my last concussion to increase blood flow to the brain and speed up my recovery. But I no longer need to take it.

 

7. Meditation

Meditation is my favourite relaxation technique and it's linked to increased blood flow in the brain.

In one study, 14 people with memory problems followed a simple 8-week meditation program. And researchers found a significant increase in blood flow to the prefrontal cortex (31). 

Logical memory and verbal fluency also improved after training (31). 

Another study showed that just five days of meditation (30 minutes each day) significantly enhanced brain blood flow (32). 

I have used the Muse headband to meditate. It gives you real-time feedback while you meditate. That way, you know how well you are meditating. It makes meditating much more enjoyable.

I previously wrote about it here, and you can get it through the Muse website.

 

8. Resveratrol

Resveratrol is a beneficial antioxidant and anti-inflammatory compound.

Many people know that it’s found in grapes, red wine, raspberries and dark chocolate.

A glass of red wine and red grapes. Red wine and red grapes contain resveratrol, an antioxidant that can increase blood flow to the brain.

Resveratrol is known to help prevent the development of neurodegenerative diseases.

And researchers are starting to understand why.

Resveratrol can increase BDNF, help restore the integrity of the blood-brain barrier, and support your mitochondria.

But it can also help you quickly get more blood and oxygen flowing to your brain. 

In one study, after taking either 250 or 500 milligrams of resveratrol, study participants experienced a dose-dependent increase in brain blood flow (26). 

Even just 75 mg has been shown to increase brain circulation and cognition (27, 29). 

And a recent study found that chronic resveratrol supplementation increases brain blood circulation in post-menopausal women, improving their cognition and mood (28, 30). 

Resveratrol is included in this supplement.

 

9. Dark Chocolate

Most people love chocolate, and your brain loves it too. 

Dark chocolate contains cocoa, which is known to improve blood flow. 

It's one of my favourite foods, and it’s included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

Research suggests that the flavonoids found in cocoa beans increase blood flow to key areas of the brain for two to three hours after eating them. And this leads to an improvement in cognitive performance and general alertness (33, 35). 

Certain food components like cocoa flavanols may be beneficial in increasing brain blood flow and enhancing brain function among older adults or for others in situations where they may be cognitively impaired, such as fatigue or sleep deprivation.
— Dr. Ian A. Macdonald, PhD, from the University of Nottingham Medical School in the United Kingdom

One study found that flavanol-rich cocoa significant increases the speed of brain blood flow in healthy elderly people (34). 

Another study found that drinking two cups of hot chocolate a day for 30 days was linked to improved blood flow to the brain and better memory (36). 

Dark chocolate also increases BDNF and reduces cortisol.

It’s important to choose a type of dark chocolate with at least 70 percent cocoa.

Click here to subscribe

10. Omega-3 Fatty Acids

Omega-3s fatty acids are the highest quality fats for the brain.

They are essential, meaning your body cannot create them and you have to get them from food or supplements.

Making sure you get more omega-3s is one of the most important actions you can take to support your brain and nervous system.

Many studies show that they significantly reduce brain inflammation; improve memory, mood and cognition; and protect against mild cognitive impairment, dementia and Alzheimer's disease.

They also naturally increase brain blood flow and circulation. 

Research shows that higher omega-3 levels are significantly correlated with higher regional cerebral blood flow (37). 

This is very important research because it shows a correlation between lower omega-3 fatty acid levels and reduced brain blood flow to regions important for learning, memory, depression and dementia.
— Dr. Daniel G. Amen, MD, Amen Clinics

And one study found that omega-3 supplementation, in comparison with placebo, significantly increased brain blood flow (38). 

Omega-3 fatty acids are found in cold water fish such as salmon, black cod, sablefish, sardines and herring.

These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

Unfortunately, most people don't consume enough of these foods.

So supplementing with krill oil should be considered.

Krill oil is a special kind of fish oil that readily crosses the blood-brain barrier. I’ve tried tons of fish oil supplements, and I recommend krill oil over all the others.

 

11. Acupuncture

Acupuncture is an alternative treatment that has been shown to increase brain blood flow and circulation.

In a randomized controlled trial, 17 post-stroke patients did acupuncture or sham acupuncture for 20 minutes.

The researchers found that the speed of blood flow to both hemispheres of the brain significantly increased during and after acupuncture treatment (39, 42). 

Research has also shown that acupuncture can significantly improve cerebral blood flow and circulation in animals (40-41, 43). 

I’m a really big fan of auricular acupuncture, which is when the needles are inserted into ear.

In my experience, ear acupuncture is more effective than regular acupuncture. I’m not sure why. I’ve just personally noticed more benefits from ear acupuncture. 

I’d recommend trying to find an acupuncturist in your area who provides ear acupuncture.

Ear acupuncture really helped me the first time I weened off antidepressants. I was surprised.

At the end of each appointment, my practitioner would secure small black seeds on my ear. 

I have also used an acupuncture mat at home to relax before bed.

Acupuncture also stimulates the vagus nerve

 

12. Chewing Gum

Research reveals that chewing increases brain blood flow (44). 

As a result, chewing can improve cognitive performance and brain function, including working and spatial memory. It also increases the level of arousal and alertness during a cognitive task (45). 

If you chew gum, make sure it’s aspartame-free.

Chewing gum also reduces cortisol

 

13. Acetyl-L-Carnitine (ALCAR) 

Acetyl-L-carnitine (ALCAR) is an acetylated form of the amino acid carnitine. 

It’s known to help reverse neurological decline by increasing levels of acetylcholine in the brain.

It’s often used as a brain booster by people of all ages because it support brain cells and increases alertness.

It’s also been shown to be very effective at alleviating chronic fatigue and improving mood by supporting mitochondrial function.

Considering all of this, it’s not too surprising that researchers have also found that it can enhance brain blood flow in people who have had a stroke (46-47). 

ALCAR is included in the Optimal Brain supplement

Make sure you read this article to learn more about the remarkable benefits of ALCAR.

Click here to subscribe

14. Nitrates

Nitrates are both naturally-occurring compounds found in soil and plants.

High levels of nitrates are found in foods such as beets, celery, cabbage, spinach, and other leafy green vegetables.

These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

Research shows that a nitrate-rich diet can increase blood flow to the frontal lobe of the brain, improving cognitive function and protecting against cognitive decline (51-52). 

Beet juice is a particularly rich source of nitrates, and studies have found that it can help widen blood vessels and increase oxygen and blood flow to the brain (53-54, 56). 

A double-blind, placebo-controlled trial even found that beet juice can improve cognitive performance by increasing brain blood flow (55). 

There have been several very high-profile studies showing that drinking beet juice can lower blood pressure, but we wanted to show that drinking beet juice also increases perfusion, or blood flow, to the brain. There are areas in the brain that become poorly perfused as you age, and that’s believed to be associated with dementia and poor cognition.
— Dr. Daniel Kim-Shapiro, PhD

I don’t really enjoy the taste, but every so often, I’ll drink beet juice during cognitively-demanding tasks. 

 

15. Drink Less Coffee (Or Take Theanine)

Coffee is generally excellent for brain health. There is a lot of research showing it is very healthy and can be protective against dementia.

However, studies also show that if you want to get more blood flowing to your brain and within you brain, you’re better off avoiding or limiting caffeine. 

A cup of coffee on a plate with a spoon. Coffee and caffeine reduce blood flow to the brain. So you should try to limit your intake of them. Or take it with theanine instead.

Researchers have found that caffeine significantly reduces brain blood flow by 20 to 30% depending on the study and dosage (74-77). 

The good news is that taking the amino acid theanine can reduce the negative brain blood flow effects of caffeine (78-79). 

That’s why I often take a theanine supplement when I drink coffee.

Theanine is included in this anti-anxiety supplement.

I also often take breaks from drinking coffee to normalize brain blood flow and circulation. 

Taking the herb rhodiola can make quitting caffeine much easier because it helps reduce withdrawal symptoms.

Lastly, you could also try supplementing with the whole coffee fruit, instead of just drinking coffee.

The coffee bean is usually separated from the coffee fruit for roasting. When this happens, the surrounding coffee fruit is then thrown away. 

That’s a problem because the coffee fruit contains several healthy compounds not found in coffee beans themselves.

In fact, scientists have discovered that ingesting coffee fruit concentrate significantly increases brain function. 

That’s why coffee fruit concentrate is included in Optimal Brain.

 

16. Piracetam

Piracetam is a “nootropic”, which means it’s a supplement that enhances cognition.

It provides a mild boost in brain function, and it’s regularly used in Europe, Asia and South America to treat cognitive impairment

A meta-analysis found that piracetam improves general cognition when supplemented by people in a state of cognitive decline (84). 

Research also shows that it can increase brain blood flow in humans and animals (85-91). 

I used to take piracetam every day but I don’t need it at all anymore.

Phenylpiracetam is an advanced version of piracetam and I found it to be even better because it improves mood and reduces anxiety. It’s also been shown to reverse the depressant effects of benzodiazepines (81-83).

Both piracetam and phenylpiracetam work best if you take them with a source of choline, such as CDP-Choline and Alpha GPC (80). 

 

17. Ketogenic Dieting

A ketogenic diet is a very low-carbohydrate diet.

To follow the diet correctly, you need to eat less than 50 grams of carbohydrates per day.

This means you need to avoid all carbohydrate-rich foods, including grains, sugar, and even potatoes, legumes and fruit.

When you restrict carbs this much, your body enters ketosis, a metabolic state in which your body and brain run on fatty acids and “ketones” instead of glucose.

Researchers have found that ketones are a therapeutic option in traumatic brain injury because they can increase brain blood flow by 39% (100). 

Studies have also shown that ketones increase cerebral blood flow by 65% in animals (103-104). 

Caloric restriction also increases ketones, which preserves cerebral blood flow in aging rats (102). 

I follow a ketogenic diet every so often, but not for long stretches of time due to hormone problems that can result from it.

 

18. Citicoline

Citicoline (also known as CDP-Choline) is one of the most bioavailable forms of choline.

You need to get choline from food. But most people don’t get enough because very few foods in the Western diet contain it.

That’s why supplementation is often necessary.

Citicoline is a supplemental form of choline that has anti-inflammatory and neuroprotective effects.

It enhances the synthesis of acetylcholine and dopamine (two neurotransmitters that are critical for optimal brain function) and increases the number of acetylcholine and dopamine receptors in your brain (105-110). 

It’s also been shown to improve cognitive function by increasing the rate of brain blood flow (114-116). 

A double-blind placebo-controlled study concluded that Citicoline improves cognitive performance in patients with Alzheimer’s disease by increasing brain blood flow (113). 

I found that citicoline improved my focus and mental energy. It's included in the Optimal Brain supplement

You can also find some choline in foods such as beef liver and egg yolks. These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

But the effects of Citicoline are much more noticeable and immediate because it quickly passes the blood-brain barrier and supports your brain.  

Citicoline also promotes the regeneration of myelin, supports the blood-brain barrier, and helps reverse brain damage.

Make sure you read this article to learn more about the remarkable benefits of Citicoline.

Click here to subscribe

19. Blueberry Juice

Drinking blueberry juice improves cognitive function in the elderly, according to research published (123-125). 

One way it improved brain health was by increasing oxygen levels and increasing blood flow to the brain.

The participants had improvements in working memory while doing cognitive testing.

In this study we have shown that with just 12 weeks of consuming 30ml of concentrated blueberry juice every day, brain blood flow, brain activation and some aspects of working memory were improved in this group of healthy older adults.
— Dr. Joanna Bowtell

The amount of juice in the study was equivalent to 230g of blueberries.

The researchers believe that the flavonoids in blueberries were responsible for the positive effects.  

 

20. Pyrroloquinoline Quinone (PQQ)

Pyrroloquinoline quinone (PQQ) is a vitamin-like enzyme and potent antioxidant found in plant foods that can improve cognitive function.

Researchers have found that supplementing with PQQ can increase blood flow to the prefrontal cortex (117-118). 

One study found that PQQ can prevent the reduction of brain function in elderly people, especially in attention and working memory, by increasing brain blood flow (119). 

 

21. Intranasal Insulin

Insulin is one of the hormones that significantly affects brain function.

It's been shown to pass the blood-brain barrier and act on insulin receptors directly within the brain.

An elderly man sprays insulin up his nose. Intranasal insulin has been shown to increase blood flow to the brain.

In a new therapeutic approach, commercially-available insulin (Novalin R) is prepared and added to nasal spray bottles, and sprayed and inhaled through the nose to support brain and mental health.

Intranasal insulin has been reported to significantly enhance memory, increase mental energy, reduce brain fog, improve mood, and lower anxiety and stress levels.

One possible mechanism is by increasing brain blood flow and circulation.

Research shows that intranasal insulin increases regional cerebral blood flow in the insular cortex (120, 122). 

In a randomized, double-blinded, placebo-controlled, intranasal insulin improved brain blood flow in older adults (121).

If you’re interested in learning more, I previously wrote a full article about intranasal insulin.

 

22. Music

I previously wrote about how music naturally reduces cortisol, helps treat OCD, and increases dopamine and oxytocin

But now it looks like it also increases blood flow to the brain.

Researchers found that musical training or listening to music increases blood flow to the brain (145-146).

It’s even more effective when you’re learning or listening to music that you really enjoy.

 

23. BONUS: Other Promising Nutrients and Herbs

Researchers have found that the following compounds can increase cerebral blood flow in animals. But I couldn’t find any research showing that it will do the same in humans. However, they are worth experimenting with as many of them have been effective at supporting my brain and mental health over the years.

A picture of the brain and nervous system.
 

Enjoy This Article? You Might Also Like My FREE Food Guide for Optimal Brain and Mental Health!

Click here to subscribe

Live Optimally,

Jordan Fallis

Connect with me

References:

(1) http://www.the-aps.org/mm/hp/Audiences/Public-Press/Archive/2011/9.html

(2) https://www.sciencedaily.com/releases/2011/04/110412131921.htm

(3) http://www.nmhu.edu/research-shows-walking-increases-blood-flow-brain/

(4) https://www.ncbi.nlm.nih.gov/pubmed/754495

(5) https://www.ncbi.nlm.nih.gov/pubmed/12070190

(6) https://www.ncbi.nlm.nih.gov/pubmed/8706113

(7) https://www.ncbi.nlm.nih.gov/pubmed/22104537

(8) https://www.ncbi.nlm.nih.gov/pubmed/27206903

(9) https://goo.gl/NKCSF1

(10) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819153/

(11) http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8749.2004.tb00460.x/abstract

(12) https://www.ncbi.nlm.nih.gov/pubmed/12905098

(13) http://www.ncbi.nlm.nih.gov/pubmed/25966264

(14) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163160/

(15) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679686/

(16) https://examine.com/supplements/vinpocetine/

(17) https://www.ncbi.nlm.nih.gov/pubmed/15760651

(18) https://www.ncbi.nlm.nih.gov/pubmed/12498034

(19) https://www.ncbi.nlm.nih.gov/pubmed/12460136

(20) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1429914/

(21) https://www.ncbi.nlm.nih.gov/pubmed/12044859

(22) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274818/

(23) https://www.ncbi.nlm.nih.gov/pubmed/23289173

(24) https://www.ncbi.nlm.nih.gov/pubmed/25548768

(25) https://www.ncbi.nlm.nih.gov/pubmed/19135345

(26) https://www.ncbi.nlm.nih.gov/pubmed/20357044

(27) https://www.ncbi.nlm.nih.gov/pubmed/27105868

(28) https://www.ncbi.nlm.nih.gov/pubmed/28054939

(29) https://www.ncbi.nlm.nih.gov/pubmed/27420093

(30) https://www.ncbi.nlm.nih.gov/pubmed/27005658

(31) https://www.ncbi.nlm.nih.gov/pubmed/20164557

(32) http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00212/full

(33) http://www.medsci.org/press/cocoa.html

(34) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518374/

(35) https://www.ncbi.nlm.nih.gov/pubmed/16794461

(36) https://www.eurekalert.org/pub_releases/2013-08/aaon-cmh073113.php

(37) https://www.ncbi.nlm.nih.gov/pubmed/28527220

(38) http://www.sciencedirect.com/science/article/pii/S0301051111002584

(39) https://www.ncbi.nlm.nih.gov/pubmed/26569545

(40) https://www.ncbi.nlm.nih.gov/pubmed/19358505

(41) http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0056736

(42) https://goo.gl/XZqLQd

(43) https://www.ncbi.nlm.nih.gov/pubmed/24006668

(44) https://www.ncbi.nlm.nih.gov/pubmed/9134116

(45) http://www.medsci.org/v11p0209.htm

(46) https://www.ncbi.nlm.nih.gov/pubmed/2068049

(47) https://www.ncbi.nlm.nih.gov/pubmed/2387659

(48) http://www.sciencedirect.com/science/article/pii/S1673537407600383

(49) https://www.ncbi.nlm.nih.gov/pubmed/19995444

(50) https://www.ncbi.nlm.nih.gov/pubmed/25277249

(51) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575935/

(52) http://www.webmd.com/brain/news/20101103/beet-juice-good-for-brain#1

(53) https://goo.gl/oeTwfb

(54) http://www.webmd.com/brain/news/20101103/beet-juice-good-for-brain#1

(55) https://www.ncbi.nlm.nih.gov/pubmed/26037632

(56) https://www.ncbi.nlm.nih.gov/pubmed/27630836

(57) https://www.ncbi.nlm.nih.gov/pubmed/16912655

(58) https://www.ncbi.nlm.nih.gov/pubmed/17459424

(59) https://www.ncbi.nlm.nih.gov/pubmed/12614590

(60) http://www.sciencedirect.com/science/article/pii/S0026286207000258

(61) http://onlinelibrary.wiley.com/doi/10.1002/ana.410150507/abstract

(62) https://www.sciencedaily.com/releases/2014/04/140429085116.htm

(63) https://goo.gl/x39wBK

(64) http://journals.sagepub.com/doi/abs/10.1038/jcbfm.2011.85

(65) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746283/

(66) https://www.ncbi.nlm.nih.gov/pubmed/22447676

(67) http://www.sciencedirect.com/science/article/pii/S0024320509004627

(68) https://www.ncbi.nlm.nih.gov/pubmed/19925811

(69) https://www.ncbi.nlm.nih.gov/pubmed/12466053

(70) https://goo.gl/JLo2KP

(71) https://www.ncbi.nlm.nih.gov/pubmed/23685189

(72) https://www.ncbi.nlm.nih.gov/pubmed/28325558

(73) https://goo.gl/ffuYWA

(74) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748160/

(75) https://www.ncbi.nlm.nih.gov/pubmed/15132312/

(76) https://www.ncbi.nlm.nih.gov/pubmed/2122148/

(77) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677118/

(78) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4480845/

(79) https://www.ncbi.nlm.nih.gov/pubmed/25761837

(80) https://www.ncbi.nlm.nih.gov/pubmed/7301036

(81) https://link.springer.com/article/10.2165/11319230-000000000-00000

(82) https://www.ncbi.nlm.nih.gov/pubmed/21689376

(83) https://www.ncbi.nlm.nih.gov/pubmed/6403074

(84) https://examine.com/supplements/piracetam/

(85) https://www.ncbi.nlm.nih.gov/pubmed/3556550

(86) https://www.ncbi.nlm.nih.gov/pubmed/21183904

(87) https://goo.gl/Uf4XQU

(88) https://www.ncbi.nlm.nih.gov/pubmed/4026900

(89) https://www.ncbi.nlm.nih.gov/pubmed/8876930

(90) https://www.ncbi.nlm.nih.gov/pubmed/10978039

(91) https://www.ncbi.nlm.nih.gov/pubmed/17523446

(92) https://goo.gl/JYEMNd

(93) https://www.nature.com/articles/ncomms14191

(94) https://www.ncbi.nlm.nih.gov/pubmed/22773150

(95) https://www.ncbi.nlm.nih.gov/pubmed/3810733

(96) https://www.ncbi.nlm.nih.gov/pubmed/3446252

(97) https://www.ncbi.nlm.nih.gov/pubmed/20096732

(98) https://goo.gl/rHW2KD

(99) https://www.ncbi.nlm.nih.gov/pubmed/27156064

(100) https://www.ncbi.nlm.nih.gov/pubmed/8967461

(101) https://ccforum.biomedcentral.com/articles/10.1186/cc10020

(102) https://goo.gl/KRZ9oy

(103) https://www.ncbi.nlm.nih.gov/pubmed/16001018

(104) http://journals.sagepub.com/doi/full/10.1038/sj.jcbfm.9600177

(105) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695184/

(106) http://www.ncbi.nlm.nih.gov/pubmed/11796739

(107) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1430829/

(108) https://www.ncbi.nlm.nih.gov/pubmed/1839138

(109) https://www.ncbi.nlm.nih.gov/pubmed/1098982

(110) http://www.ncbi.nlm.nih.gov/pubmed/19351232

(111) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011061/

(112) https://www.ncbi.nlm.nih.gov/pubmed/16055952

(113) https://www.ncbi.nlm.nih.gov/pubmed/10669911

(114) https://www.ncbi.nlm.nih.gov/pubmed/1098982

(115) https://www.ncbi.nlm.nih.gov/pubmed/7820960

(116) https://www.ncbi.nlm.nih.gov/pubmed/7913981/

(117) https://link.springer.com/chapter/10.1007/978-3-319-38810-6_29

(118) https://www.ncbi.nlm.nih.gov/pubmed/27526146

(119) https://www.ncbi.nlm.nih.gov/pubmed/26782228

(120) https://www.ncbi.nlm.nih.gov/pubmed/23907764

(121) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391232/

(122) http://onlinelibrary.wiley.com/doi/10.1002/hbm.22304/abstract

(123) https://www.ncbi.nlm.nih.gov/pubmed/28249119

(124) http://www.exeter.ac.uk/news/featurednews/title_572581_en.html

(125) https://www.sciencedaily.com/releases/2017/03/170307100356.htm

(126) https://www.ncbi.nlm.nih.gov/pubmed/20453669

(127) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3539653/

(128) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3246784/

(129) https://www.ncbi.nlm.nih.gov/pubmed/15118175

(130) https://www.ncbi.nlm.nih.gov/pubmed/14757593

(131) https://www.ncbi.nlm.nih.gov/pubmed/28155036

(132) https://www.ncbi.nlm.nih.gov/pubmed/28506213

(133) https://www.ncbi.nlm.nih.gov/pubmed/15929050

(134) https://www.ncbi.nlm.nih.gov/pubmed/17088679

(135) https://www.ncbi.nlm.nih.gov/pubmed/10867218

(136) https://www.ncbi.nlm.nih.gov/pubmed/9682941

(137) http://jamanetwork.com/journals/jamapsychiatry/fullarticle/481961

(138) https://www.ncbi.nlm.nih.gov/pubmed/12742675

(139) https://www.ncbi.nlm.nih.gov/pubmed/9373423

(140) https://www.ncbi.nlm.nih.gov/pubmed/21167506

(141) https://www.ncbi.nlm.nih.gov/pubmed/7496746

(142) https://www.ncbi.nlm.nih.gov/pubmed/1919689

(143) http://neuro.psychiatryonline.org/doi/abs/10.1176/jnp.15.3.326

(144) http://jamanetwork.com/journals/jamaneurology/fullarticle/783869

(145) https://www.sciencedaily.com/releases/2017/04/170412181341.htm

(146) https://www.medicalnewstoday.com/articles/276595

Terms and Conditions

Privacy Policy

Affiliate Disclosure

Disclaimer

3 Foods That Make Your Brain Work Remarkably Better

Certain foods are so nutrient dense and have remarkable therapeutic qualities.

Introducing them into your diet can have a profound impact on your brain and overall health. 

Today I’m going to share with you my three of my favourites. 

When I started consuming these regularly, I saw improvements in my physical health, which moved the needle in the right direction towards optimal brain and mental health. 

An illustration of two brain - one full of fruits and vegetables, the other full of candy and junk food.

1. Turmeric (Curcumin)

Turmeric – the spice that gives curry its yellow colour – may be one of the most powerful foods. 

For thousands of years, turmeric has been used medicinally in India. And now today, thousands of high-quality scientific studies have been published, looking into the hundreds of active compounds within turmeric that benefit the body and brain (24). 

One of these compounds is curcumin. 

Curcumin is the most heavily researched compound within turmeric.

It’s been shown to have a many medicinal properties, including anti-inflammatory and antioxidant effects.

If you take a high-quality, concentrated source of curcumin, it is able to cross the blood-brain barrier and act as a neuroprotective agent, helping to prevent and treat a wide range of neurological and mental disorders. 

A number of studies show that curcumin is a natural antidepressant, working significantly better than placebo and working just as well as Prozac in the treatment of “several mood-related symptoms” – but without the severe side effects that come along with medication.

Other research shows that curcumin is effective at fighting major depression by reducing stress hormones and increasing serotonin and dopamine, two neurotransmitters in the brain responsible for emotional wellbeing (26-30, 59-62). 

Curcumin has also been shown to help people manage stress and anxiety and overcome trauma. In one study, the curcumin reduced "stress-related depressive symptoms" in animals exposed to chronic stress. In other words, it made them more resilient (31). 

And a ground-breaking 2015 study demonstrated that curcumin can prevent new traumatic memories from being stored in the brain, and can remove “fear memories” already existing in the brain. The researchers suggested that curcumin should be seriously considered as a treatment for post-traumatic stress disorder (32). 

This suggests that people suffering from post-traumatic stress disorder and other psychological disorders that are characterized by fearful memories may benefit substantially from curcumin.
— Dr. Glenn Schafe, PhD, Hunter College

Lastly, curcumin powerfully protects the aging brain, improves attention and memory in older individuals, and prevents and delays the development of Alzheimer’s.

In fact, seniors in India who eat turmeric regularly have the lowest rate of rate of Alzheimer’s in the world (33, 34, 58, 66). 

Click here to subscribe

How Can A Spice Possibly Treat Mental Illness?

Almost every chronic disease – including depression, anxiety, PTSD and Alzheimer’s – has been linked to chronic, low-level inflammation. People with clinical depression in particular have been shown to have 30 percent more brain inflammation than the general population (35-38). 

And curcumin has potent anti-inflammatory effects. Many researchers point to this as the main reason why the compound is so beneficial for people suffering from these diseases (39- 45).

Despite what has been previously believed, depression is not all about brain chemicals such as serotonin. Our findings support consistent research that depression is associated with increased inflammation and oxidative stress and it can be treated with an agent that has anti-inflammatory and antioxidant properties. There is now increasing support for the antidepressant effects of curcumin, with a previous study demonstrating curcumin to be as effective as a pharmaceutical antidepressant for the treatment of depression.
— Dr. Adrian Lopresti, PhD, Clinical Psychologist and senior researcher at Murdoch University

Curcumin also increases the amount of omega-3 fatty acids in the brain. It does this by increasing enzymes that enhance the synthesis of docosahexaenoic acid (DHA) from its precursor alpha-linolenic acid (ALA) (56). 

And as I’ve discussed before, ALA is usually poorly converted into DHA, and DHA deficiency is linked to several brain and mental health disorders. So taking both krill oil and curcumin can support the fatty acid composition of your brain.

Another possible explanation is that curcumin boosts Brain-Derived Neurotrophic Factor (BDNF), a protein in the brain that increases the growth of new brain cells, and is linked to improved brain function and a lower risk of mental disease. It's been shown that people with depression and Alzheimer’s have reduced levels of BNDF in their brain (46-50, 31). 

Curcumin definitely helped me overcome post-concussion syndrome, and this makes sense considering the research showing that it counteracts cognitive impairment caused by traumatic brain injury. It can also delay and even reverse general deterioration of cognitive function, and may even improve memory and make you smarter (51, 52, 57). 

But before you go and start eating lots of turmeric and curcumin, it’s important to know how to take it and in what form

 

The Best Form of Curcumin For Your Brain

It is difficult to experience the full therapeutic effects of curcumin by simply eating turmeric. This is because the curcumin content of turmeric is low - only about 3% of turmeric is made up of curcumin (52). 

Most of the studies I have referenced use turmeric extracts that contain large amounts of curcumin – more than what you’d be able to consume simply by adding turmeric to your meals. On top of this, curcumin is very inefficient at absorbing into the bloodstream and reaching the brain. Luckily, science and technology has been able to concentrate significant amounts of curcumin into supplement form and increase its bioavailability (54, 55). 

There are several different patented forms of “bioavailable” curcumin and I’ve tried most of them. But I didn’t notice a significant effect from most of them, making me think that they are not actually “bioavailable”, or at the very least, they aren’t able to cross the blood-brain barrier effectively and reach the brain.

But I did notice a difference from this form of curcumin.

Based on my experience and research, it is the most effective form of curcumin for the treatment of brain and mental disorders, as it’s formulated in a way that enables the active ingredients to cross the blood-brain barrier. Other “bioavailable” forms of curcumin will likely still affect the rest of the body, but not the brain.

That’s why I recommend it. It is one of my favourite supplements and since it is a fat soluble, I take it every day with a fatty meal. 

Click here to subscribe

2. Coconut Oil (MCTs and Ketones)

Coconuts are largely made up of saturated fat, and since the 1950s, there has been a war on saturated fat (5). 

As a result, coconut oil has been vilified and blamed for clogging arteries and causing heart disease.

But, as I’ve discussed before, saturated fat is actually harmless. It appears to be “common knowledge” that it's bad for us and should be avoided, but this is a myth that has been disproven over and over (3, 4, 6, 7). 

In fact, when people make coconut a big part of their diet, they have lower rates of heart disease, stroke and other chronic diseases (1, 2, 9). 

And fats, particularly the ones from coconut oil, are crucial for optimal brain and mental health. The brain is 60% fat and the integrity of your brain cell membranes depend on high-quality dietary fat (8). 

The low-fat approach to eating hasn’t helped us control weight or become healthier. Detailed research — much of it done at Harvard — shows that the total amount of fat in the diet isn’t really linked with weight or disease.
— Harvard School of Public Health

I used to eat coconut oil every day. But I actually don’t eat as much anymore because I got sick of its taste. Knowing it was healthy for me, I actually ate way too much that I actually started to despise the taste of coconut.

But coconut oil also contains medium-chain triglycerides (MCT). MCTs are fatty acids of a smaller length that are easily digested in the body, and quickly metabolized into ketones by the liver. Ketones are an alternative source of fuel, which can quickly recharge the brain’s malfunctioning cells and improve cognitive function in susceptible individuals. The ketones that result from supplementing with pure MCT oil readily cross the blood-brain barrier and provides instant energy to brain cells (10, 21). 

Coconuts and glass of coconut oil.

I used to supplement with 1-2 tablespoons of pure MCT oil every morning.

I now take an exogenous ketone supplement that quickly puts me into a ketogenic state and immediately increases my mental clarity. It works better than coconut oil and MCT oil, and it gives my brain a steady supply of ketones and energy to start my day. 

Research is accumulating in support of ketones, coconut oil and its MCTs. 

Researchers have labelled coconut oil an “anti-stress and antidepressant nutritional oil” after finding that it can reduce stress and depression by increasing antioxidants in the brain (11). 

And high-fat diets and ketones can help slow down aging in the brain by repairing cell damage, which can help treat memory loss, dementia, mild cognitive impairment, Alzheimer’s, Parkinson’s, stroke, epilepsy and traumatic brain injury (12, 16-20). 

And you don’t have to wait days or months to witness the neuroprotective benefits.

One study in the journal Neurobiology of Aging showed significant cognitive and memory improvements within 90 minutes of taking MCT oil (13). 

It’s quite possible that these brain and mental health benefits may stem from ketone production, the MCTs within coconut oil, and/or coconut oil’s anti-inflammatory and antioxidant properties (14, 15). 

Bacteria, viruses, inflammation and our immune system also impact the health of our brains, and lauric acid, one of the saturated fatty acids found in coconut oil, has antibacterial, antiviral, antifungal, and immune-boosting properties (22). 

Caprylic acid, another main fatty acid in coconut oil and MCT oil, improves circulation, has anti-aging properties and can help treat Alzheimer's (23).

And you don’t need to stick with coconut oil.

Coconut milk, water and meat are other ways to get the benefits of coconut and MCT oil. 

Or you can simply take ketones to experience the fastest and most powerful beneficial effects.

 

3. Organ Meats (Beef Liver)

You’re going to eat my what?

You’re going to eat my what?

Organ meats are nutritional powerhouses.

Traditional cultures recognized this and have consumed them for thousands of years.

Unfortunately, we hardly we eat them today.

In some traditional cultures, they only ate the organ meats. They threw away muscle meat or gave it to the dogs. And that's obviously the opposite of what we do today. The thought of throwing away a lean piece of steak to your dog seem insane. But muscle meat just isn't as nutritious as the rest of the animal.

And if you look at predatory animals, after they kill their prey, they instinctively start eating the organs first, saving the muscle meat for later.

In one of my favourite books called Deep Nutrition: Why Your Genes Need Traditional Food, Dr. Catherine Shanahan recommends the consumption of organ meats for optimal gene function.

Beef liver in particular is incredibly nutrient dense. It’s nature multivitamin, containing more nutrients, gram for gram, than any other food. It’s actually a superfood. And I don’t like using the word "superfood". But beef liver actually fits the definition of a superfood, especially if it’s coming from grass-fed cows.

We hear over and over that fruits and vegetables are so nutritious. And they are. They should definitely make up a large part of your diet, as they include higher amounts of phytonutrients compared to animal foods. But when it comes to vitamins and minerals, fruit and veggies pale in comparison to organ meats such as liver.

Liver has almost everything in it that you need for optimal brain and mental health (63):

  • An excellent source of high-quality protein and amino acids

  • Omega 3 fatty acids

  • Vitamin C

  • Minerals such as zinc, potassium, magnesium, phosphorous, manganese, iron and chromium, some of which are very important for cognitive function and overall brain health.

  • Fat soluble vitamins A, D, E, K. Liver is the most concentrated source of retinol (preformed vitamin A) found in nature.

  • All of the B vitamins, including choline, B12 and folate, which support methylation, a biochemical process that is very important for robust and vibrant brain and mental health. Liver has 17 times more vitamin B12 than regular ground beef (64).

The nutrients found in beef liver.

That’s why I recommend people throw away their multivitamin and eat liver instead. The great thing about organ meats such as liver is that they're much cheaper than muscle meat. So you actually save money by purchasing the healthiest part of the animal.

And if you can’t find high-quality grass-fed liver in your area or don’t like the taste of liver, I recommend raw beef liver powder in capsule form. I can’t stand the taste of liver, so I take 4 capsules every day.

Some people object to eating liver, as they believe the liver filters and stores toxins in the body. But the liver doesn't store toxins. It neutralizes them, and then they are flushed out of the body. Toxins that the body can't eliminate often accumulate in the fat of the animal, not the liver. That's why I recommend eating lean meats if you aren't eating organic, grass-fed meats. You don't really want to be eating the fat (or organs) of sick, conventional animals.

Another objection is that it contains animal fat and cholesterol. But as I've discussed before, saturated fat and cholesterol are not bad for your health. This is a huge myth.

Other than liver, you can also try incorporating other organs into your diet, including beef kidney, tongue, heart and even brain into your diet. 

That's right, brain.

Some traditional cultures believe “like supports like” and eating the organs of a healthy animals supports the organs of the eater. So it’s possible that eating the brains of healthy animals could support the health of your own brain. And this would make sense since cow brain is full of healthy omega-3 fats and B12, which help fight depression, fatigue and cognitive decline

 

Conclusion

Nutrient-based medical treatments used to be the norm.

Unfortunately, the general public is now convinced that pharmaceutical medicine is their only option.

But it’s not.

Food-based interventions work and they helped me get better.

And despite all the research demonstrating the powerful medicinal properties of these foods, the pharmaceutical industry and conventional medicine seem to ignore them. 

They’re found in millions of kitchens around the world, so they lack exclusivity and therefore profitability. 

They threaten the status quo and pharmaceutical industry revenue.  

Unless they can be transformed into patented substances, the pharmaceutical industry doesn’t have a financial incentive to research and promote them to physicians.

Unless an investor is willing to pay millions of dollars upfront to pay for multi-phased, double-blind, randomized control trials, they will never be approved for clinical practice and prescribed by your doctor. 

You don’t have to wait around for all of this to happen.

You can take control of your own brain health and try them yourself:

  • Coconut oil, MCT oil and/or ketones

  • Curcumin

  • Grass-fed beef liver or desiccated liver supplements

 
Click here to subscribe
 

Live Optimally,

Jordan Fallis

Connect with Me

References:

(1) http://ajcn.nutrition.org/content/34/8/1552.short

(2) http://www.ncbi.nlm.nih.gov/pubmed/8450295

(3) http://ajcn.nutrition.org/content/early/2010/01/13/ajcn.2009.27725.abstract

(4) http://www.ncbi.nlm.nih.gov/pubmed/3519928

(5) http://nutritiondata.self.com/facts/fats-and-oils/508/2

(6) http://www.eufic.org/page/en/show/latest-science-news/fftid/Study-no-association-dietary-saturated-fats-cardiovascular-disease-risk/

(7) http://www.ajcn.org/cgi/content/abstract/ajcn.2009.27725v1

(8) http://www.ncbi.nlm.nih.gov/pubmed/20329590

(9) http://ajcn.nutrition.org/content/early/2010/01/13/ajcn.2009.27725.abstract

(10) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2604900/

(11) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247320/

(12) http://www.sciencedaily.com/releases/2014/11/141105112614.htm

(13) http://www.ncbi.nlm.nih.gov/pubmed/15123336

(14) http://www.ncbi.nlm.nih.gov/pubmed/24613207                             

(15) http://www.ncbi.nlm.nih.gov/pubmed/20645831

(16) http://wwwhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2367001/ncbi.nlm.nih.gov/pmc/articles/PMC2367001/

(17) http://www.ncbi.nlm.nih.gov/pubmed/24150106

(18) http://www.scienchttp://www.sciencedirect.com/science/article/pii/S1933721308000937direct.com/science/article/pii/S1933721308000937

(19) http://www.biomedcentral.com/content/pdf/1743-7075-6-31.pdf

(20) http://www.sciencedirect.com/science/article/pii/S1474442208700929

(21) http://www.nutritionjrnl.com/article/S0899-9007(12)00365-6/abstract

(22) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC444260/pdf/aac00361-0029.pdf

(23) http://www.ncbi.nlm.nih.gov/pubmed/21830350

(24) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633300/

(25) http://www.ncbi.nlm.nih.gov/pubmed/23832433

(26) http://www.ncbi.nlm.nih.gov/pubmed/23832433

(27) http://link.springer.com/article/10.1007/s00213-008-1300-y

(28) http://www.sciencedirect.com/science/article/pii/S0014299905006230

(29) http://www.ncbi.nlm.nih.gov/pubmed/19882093

(30) http://www.jad-journal.com/article/S0165-0327(14)00362-0/abstract                                

(31) http://www.sciencedirect.com/science/article/pii/S0006899306027144

(32) http://www.ncbi.nlm.nih.gov/pubmed/25430781

(33) http://www.annalsofia

(34) http://www.drweil.com/drw/u/ART03064/Alzheimers-Disease.html

(35) http://www.ncbi.nlm.nih.gov/pubmed/12490960

(36) http://www.ncbi.nlm.nih.gov/pubmed/12490959

(37) http://www.jci.org/articles/view/57132

(38) http://www.sciencedaily.com/releases/2015/01/150128113824.htm

(39) http://www.ncbi.nlm.nih.gov/pubmed/19594223

(40) http://www.jbc.org/content/270/42/24995.full

(41) http://www.ncbi.nlm.nih.gov/pubmed/17885582

(42) http://www.ncbi.nlm.nih.gov/pubmed/12676044

(43) http://www.sciencedirect.com/science/article/pii/S0304383501006553

(44) http://www.sciencedirect.com/science/article/pii/S1357272508002550

(45) http://www.ncbi.nlm.nih.gov/pubmed/15489888

(46) http://www.hindawi.com/journals/tswj/2009/624894/abs/

(47) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2504526/

(48) http://www.sciencedirect.com/science/article/pii/S0006322303001811

(49) http://www.sciencedirect.com/science/article/pii/0896627391902733

(50) http://www.sciencedirect.com/science/article/pii/S0166432812006997

(51) http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0031211

(52) http://link.springer.com/article/10.1007%2Fs10522-013-9422-y

(53) http://www.ncbi.nlm.nih.gov/pubmed/17044766

(54) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918523/

(55) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918227/

(56) http://www.ncbi.nlm.nih.gov/pubmed/25550171

(57) http://www.ncbi.nlm.nih.gov/pubmed/16364299

(58) http://www.ncbi.nlm.nih.gov/pubmed/25277322

(59) http://www.ncbi.nlm.nih.gov/pubmed?term=curcumin%205-ht2c

(60) http://www.ncbi.nlm.nih.gov/pubmed/17022948

(61) http://www.ncbi.nlm.nih.gov/pubmed/26610378

(62) http://www.ncbi.nlm.nih.gov/pubmed/16171853

(63) http://nutritiondata.self.com/facts/beef-products/3469/2 

(64) https://ndb.nal.usda.gov/ndb/search/list

(65) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781139/

(66) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929771/

Terms and Conditions

Privacy Policy

Affiliate Disclosure

Disclaimer