29 Effective Ways to Reduce Excess Glutamate in the Brain

Your brain isn't just a bunch of grey matter.

It’s an intricate network of billions of neurons, communicating through neurotransmitters. 

One of these key neurotransmitters is glutamate.

Glutamate is an unsung hero, playing a vital role in your brain function and mental health.

However, as with many things in life, balance is key. 

Glutamate is necessary for optimal brain function, but an excess can cause problems and impact your brain health. 

That’s why understanding and managing glutamate levels in your brain is very important. 

In this article, we’ll explore the fascinating world of glutamate. 

I’ll delve into its function, and explain the causes and implications of excess glutamate.

But most importantly, I’ll share 29 practical strategies to reduce excess glutamate in the brain. 

This is essential reading for anyone who wants to maintain balanced glutamate levels and optimize their brain function and mental health. 

Are you ready to unravel the mysteries of glutamate?

Let's get started.

ways-to-reduce-excess-glutamate-in-the-brain-reducing-lower-reduction-techniques-natural-supplements-reducers-detox-control-levels-overload-balance-imbalance-guide-how-to-tips-neurological-health-mental-foods-lifestyle-changes-neurotransmitters-neuro

Understanding Glutamate: What Is It? What Does It Do in the Brain?

Imagine the brain as a bustling city.

It’s full of activity and flashing lights.

Signals are being sent back and forth. 

Central to all of this activity is glutamate.

Glutamate is one of the most abundant neurotransmitters in your nervous system. 

Glutamate enables communication between neurons, supporting crucial functions such as learning, memory, and cognitive processes.

It essentially acts like a postman in the brain, delivering messages between neurons.

When a neuron releases glutamate, it binds to specific receptors on a nearby neuron. 

This triggers an electrical signal that moves through the neuron.

This then stimulates various responses that allow your brain to function normally. 

So glutamate carries messages from neuron to neuron.

But, for all its importance, glutamate is also a bit of a Jekyll and Hyde character. 

It's a necessity for normal brain function, but glutamate levels can get too high.

And this can have harmful consequences. 

This is due to glutamate's excitatory nature.

Glutamate stimulates neurons to fire. In excess, this can lead to the overexcitation of neurons, a state known as excitotoxicity. 

This excitotoxicity can cause neuronal damage or death, which can then lead to various neurological conditions such as Alzheimer's disease, stroke, and epilepsy.

Moreover, glutamate excess isn't a rare occurrence. It can be triggered by factors like stress, low magnesium levels, poor diet, alcohol and drug use, and even genetic predisposition.

Therefore, while glutamate is vital for our brains, it's a substance we need to handle with care. 

Like city traffic, the right amount keeps things flowing smoothly. But too much can lead to chaos. 

Understanding how to control glutamate levels in your brain is a vital step towards ensuring your brain runs smoothly and healthily. 

In the upcoming sections, I'll explore the benefits of reducing glutamate, the signs and symptoms of excess glutamate, and then discuss practical strategies to keep it under control.

 

The Benefits of Reducing Excess Glutamate in the Brain

Maintaining a healthy balance of glutamate is crucial.

Reducing excess glutamate can have numerous benefits for brain health and overall wellbeing.

Here are some of the health benefits of reducing excess glutamate in the brain:

Neuroprotection: High levels of glutamate can cause excitotoxicity, a state of hyperactivity that can damage or even kill neurons. By keeping glutamate levels in check, you protect your neurons from damage, preserving the health and integrity of your brain tissue (70). 

Reduced Risk of Neurological Disorders: Several neurological disorders, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis, have been linked to excessive glutamate activity. By regulating glutamate levels, you can reduce the risk or slow the progression of these disorders (71-73). 

Improved Mental Health: Excess glutamate activity has also been implicated in several mental health disorders, including anxiety, depression, and schizophrenia. Balancing glutamate levels can help manage symptoms and promote better mental health (74-76). 

Cognitive Enhancement: Glutamate is essential for synaptic plasticity, the process by which connections between neurons are strengthened or weakened, which is crucial for learning and memory. However, too much glutamate can interfere with this process. By reducing excess glutamate, you can enhance your cognitive function (77). 

Prevention of Migraines and Seizures: Excessive glutamate release can lead to hyperexcitability of neurons, which can trigger migraines and seizures. Maintaining a healthy balance of glutamate can help prevent these issues (78-79). 

Reduced Inflammation: Glutamate is involved in inflammatory processes within the brain. High levels of glutamate can contribute to neuroinflammation, which is linked to many brain disorders. Reducing excess glutamate can help control inflammation, further protecting brain health (80-81).

 

Signs, Symptoms and Health Conditions Associated with Excess Glutamate in the Brain

While we’ve established that glutamate is a key player in the brain, like an overenthusiastic musician, it can throw the entire orchestra out of tune when it plays too loudly.

But how do we know when glutamate is in overdrive? 

Here, I’ll discuss the signs, symptoms and health conditions that indicate that you could have excess glutamate levels in your brain.

Remember, excess glutamate causes excitotoxicity – an overexcitation of neuronal activity. 

This overexcitation can manifest in various ways, but some common symptoms and conditions include:

Alzheimer's Disease: Research points to glutamate excitotoxicity as a key player in the onset and progression of Alzheimer's disease. This overstimulation of neurons by glutamate was found to contribute to the neural damage observed in this debilitating condition (72). 

Amyotrophic Lateral Sclerosis (ALS): Also known as Lou Gehrig's disease, this is a neurodegenerative disorder affecting motor neurons. Excitotoxicity is thought to be one of the factors leading to motor neuron death in ALS (82). 

Traumatic Brain Injury (TBI): After a TBI, there can be a surge of glutamate that leads to excitotoxicity and further brain damage (83). 

Other Neurodegenerative Diseases: These include Parkinson's disease and Huntington's disease. In these conditions, excitotoxicity caused by excess glutamate can contribute to the progressive loss of neurons (71). 

Stroke: During a stroke, the lack of oxygen and glucose can lead to a massive release of glutamate, causing excitotoxicity and contributing to the damage seen in stroke (84). 

Migraines: Studies highlight the role of elevated glutamate levels in triggering migraines. Excess glutamate was found to stimulate pain pathways in the brain, leading to the onset of migraines (78-79). 

Epilepsy: Glutamate is involved in the initiation and spreading of seizure activity. Overexcitation of neurons can trigger seizures, and antiepileptic drugs often work by decreasing glutamate levels or blocking its effects (78-79). 

Multiple Sclerosis: Some studies have suggested that glutamate excitotoxicity might be involved in the damage to neurons seen in multiple sclerosis (73). 

Autism: Some research indicates that people with autism might have higher levels of glutamate, which could play a role in the symptoms of this condition (85). 

Anxiety and Restlessness: Excess glutamate can lead to feelings of unease and nervousness, as the brain becomes overstimulated (86). 

Insomnia: With glutamate firing up neurons, it can make it challenging for the brain to wind down for sleep (87). 

Cognitive Impairment: Over time, chronic excess glutamate can lead to cognitive issues, such as memory loss or difficulty concentrating (88). 

Low Mood and Depression: An imbalance in glutamate has been linked to mood disorders, including depression and bipolar disorder. Certain treatments for depression, such as ketamine, work by blocking glutamate activity (89). 

Hyperactivity and ADHD: High glutamate levels are often observed in individuals with ADHD, contributing to their hyperactivity and difficulty focusing (90). 

Schizophrenia: Studies suggest that schizophrenia might be related to hyperactivity of the glutamatergic system (91). 

While research clearly illustrates that excess glutamate can cause harm, it's important to remember that glutamate isn't inherently 'bad'. In fact, it's crucial for our brain function. 

The key lies in maintaining a balanced level of this vital neurotransmitter. In fact, balance is a central theme in brain health, and glutamate is no exception. 

When in balance, glutamate facilitates learning, memory, and cognition, orchestrating a well-functioning neural network. 

But when levels tip towards excess, it can lead to overstimulation of neurons, resulting in a range of symptoms and conditions that I discussed above.

Maintaining balanced glutamate levels is, therefore, of paramount importance for our brain health and overall wellbeing. 

Just as a tightrope walker maintains a delicate balance to cross safely, so too must we balance our glutamate levels to ensure optimal brain function.

In the next sections, I'll delve into the science-backed steps you can take to reduce excess glutamate and keep it in balance.

 

The Best Lifestyle Habits, Therapies and Practices Proven to to Reduce Excess Glutamate in the Brain

1. Exercise 

Physical activity has been shown to have profound effects on the brain, influencing cognition and mood.

This includes the regulation of neurotransmitters, including glutamate.

Research shows that exercise enhances overall brain metabolism, which involves the efficient processing and clearance of excess glutamate (4). 

Exercise can also stimulate the conversion of glutamate into glutamine by activating an enzyme called glutamine synthetase (5). 

This enzyme produces more glutamine, which is less excitatory than glutamate, and it can safely be stored in the brain or transported out of it.

Exercise can also enhance the expression of glutamate transporters, which are proteins responsible for moving glutamate away from the extracellular space where it can cause harm. As a result, exercise can help prevent the excessive accumulation of glutamate (6). 

Exercise is recommended by many experts and it’s often their number one piece of advice for optimal brain health.

My usual advice is to find a sport or exercise routine that you enjoy, so that you’ll stick with it consistently.

Exercise also increases endorphins, nerve-growth factor, orexin, HRV, GABA, GDNF, and reduces inflammation in the brain.

 

2. Reduce Stress

High stress levels can influence glutamate production and increase glutamate levels in the brain.

Chronic or acute stress triggers a cascade of physiological responses, including the activation of the hypothalamic-pituitary-adrenal (HPA) axis.

Stress also increases the release of cortisol, a hormone that is released during stressful events.

These changes can then lead to an increase in glutamate levels.

Research shows that high levels of cortisol can increase glutamate release in certain regions of the brain (7). 

Stress reduction can also promote the production of GABA, a neurotransmitter that counteracts the excitatory effects of glutamate.

Therefore, it's important to develop effective stress-management techniques. 

The techniques to manage stress can vary widely. But many have been shown to have a positive impact on glutamate levels.

Some examples include meditation, yoga, tai chi, deep breathing, biofeedback, counseling and therapy, or even just pursuing a hobby that brings you joy and relaxation.

Remember, it's important to choose stress management techniques that suit your lifestyle and preferences, and regular practice is key.

 

3. Acupuncture

Acupuncture is an integral part of Traditional Chinese Medicine.

It has been practiced for hundreds of years for a variety of ailments. 

Acupuncture involves the insertion of thin needles into specific points on the body, known as acupoints, to manipulate the flow of energy and restore balance within the body.

Some studies suggest that acupuncture can help to balance glutamate levels in the brain.

Acupuncture can also stimulate the production of GABA, the brain's primary inhibitory neurotransmitter that counteracts the excitatory effects of glutamate (8). 

Acupuncture is also known for its anti-inflammatory properties. Inflammation can stimulate glutamate release and impede its clearance, so acupuncture's ability to reduce neuroinflammation can help regulate glutamate levels (9). 

I’m personally a big fan of auricular acupuncture. Auricular acupuncture is when needles are inserted into the ear. 

I’d recommend trying to find a health practitioner in your area who provides it, especially if you’re weaning off psychiatric medication. It really helped me the first time I came off antidepressants. I was surprised. At the end of each appointment, my practitioner would secure small black seeds on my ear.

In my experience, ear acupuncture is more effective than regular acupuncture.

I also often lie on an acupuncture mat at home to relax before bed.

Click here to subscribe

4. Meditation

Meditation is a mind-body practice that promotes focused attention, mindfulness, and a sense of inner peace.

It has gained significant attention for its potential to enhance mental wellbeing and resilience. 

Meditation is personally one of my favorite daily activities to maintain optimal brain function and mental health.

It can influence various physiological and psychological processes, including the regulation of neurotransmitters like glutamate.

Research shows that meditation can stimulate the production of GABA,, an inhibitory neurotransmitter that counteracts the excitatory effects of glutamate (10). 

Meditation can also influence brain metabolism, leading to improved energy utilization and clearance of waste products, including excess glutamate (12). 

Meditation comes in many forms, including mindfulness meditation, loving-kindness meditation, guided imagery, and body scan practices. 

Experiment with different forms to find one that resonates with you.

You should aim for at least 10-20 minutes of meditation per day.

If you're new to meditation, start with just a few minutes each day and then gradually increase the time as you become more comfortable with the practice.

Remember, the benefits of meditation are usually seen with regular and consistent practice. 

Make it a part of your daily routine, whether it's first thing in the morning, during your lunch break, or before bedtime.

If you're new to meditation, you might want to start with guided practices, or even seek the assistance of a meditation teacher. 

There are also many apps available that offer guided meditations. These can be particularly helpful for beginners.

I personally use and recommend the Muse headband to meditate. It gives you real-time feedback while you meditate. It makes meditation a lot more fun and tolerable. 

I previously wrote about it here, and you can get it through the Muse website.

Remember, just like any other skill, meditation takes practice and patience. Don't be discouraged if you don't see immediate changes. Over time, with consistent practice, you're likely to notice further improvements.

Always remember that the goal is not perfection but rather developing a greater sense of awareness and peace.

 

5. Yoga

Yoga is an ancient practice originating from India.

It involves a combination of physical postures, breath control, and meditation. 

Yoga is increasingly recognized for its numerous physical and mental health benefits.

Its benefits extend to the regulation of brain chemistry, including neurotransmitters such as glutamate.

Yoga can stimulate the production of GABA, an inhibitory neurotransmitter that counteracts the excitatory effects of glutamate (11). 

Keep in mind that yoga practice should be adapted to individual abilities and needs.

It is often beneficial to seek instruction from a certified yoga teacher, especially for beginners.

So, consider joining a local yoga class or find online yoga classes that suit your level. The guidance of a professional can help you ensure proper form and avoid injury.

Consistency is also key. Even if it's just 15-20 minutes, regular practice can result in significant benefits.

Try different types of yoga to keep things interesting and to benefit from different postures and practices. This could include Hatha, Vinyasa, Yin, or Restorative yoga.

Despite all the great research behind yoga, I’m personally not a big fan of it. A lot of people swear by it but it’s just not for me. I prefer meditation and neurofeedback, which I’ll talk about now. 

 

6. Neurofeedback

Neurofeedback, also known as EEG Biofeedback, is a type of biofeedback therapy that provides real-time displays of brain activity with the goal of self-regulation. 

It involves observing one's own brain waves via an electroencephalogram (EEG) and learning how to control or modify them through feedback. 

Neurofeedback has shown promise in the treatment of various neurological and psychiatric conditions.

Recent research suggests it also plays a role in regulating neurotransmitters such as glutamate (13). 

Studies have shown that neurofeedback training can balance the excitatory (glutamate) and inhibitory (GABA) neurotransmitter systems (14). 

Personally, neurofeedback was one of the most impactful actions I took to overcome severe anxiety. 

It works at a deep subconscious level, breaking the cycle of chronic anxiety.  

It shifts you into a natural, healthier state of mind.  

If you want to try neurofeedback, it’s best to work with a qualified neurofeedback practitioner to ensure the correct protocols are used. They’ll also interpret and respond to the feedback effectively.

If you’re interested in neurofeedback, I recommend becoming a client and working with us to determine the best type of neurofeedback for you and your condition. I have found that some types of neurofeedback are completely ineffective and may even be harmful. So it’s very important to do the right type of neurofeedback that actually works. 

I also sometimes recommend the Muse headband. It’s a decent substitute to real neurofeedback and gives you real-time feedback on your brain waves while you meditate. 

I previously wrote about the Muse headband here, and you can get it through the Muse website. But keep in mind that it’s definitely not as effective as clinical neurofeedback.

 

7. Deep Sleep

Sleep serves multiple critical roles in the body, from the consolidation of memory to the maintenance of mental health. 

Research clearly shows that sleep plays a vital role in brain chemistry regulation, particularly concerning glutamate.

During the deep stages of sleep, the brain's glymphatic system (a waste clearance system) becomes more active. This system facilitates the removal of excess glutamate and other waste products from the brain, helping to maintain optimal glutamate balance (15). 

Sleep also provides neurons a break from the constant excitatory activity that occurs during wakefulness, reducing the demand for glutamate. This pause allows for the maintenance of glutamate balance and prevents the overstimulation that could lead to excess glutamate.

Non-REM sleep also promotes the production of GABA, an inhibitory neurotransmitter that counteracts the excitatory effects of glutamate (16). 

Given the connection between sleep and glutamate regulation, prioritizing good sleep hygiene is crucial. 

This involves maintaining a regular sleep schedule, creating a quiet and comfortable sleep environment, and addressing any underlying sleep issues.

Good sleep isn't a luxury. It's a necessity for optimal brain function and mental health.

I personally used to have very poor sleep and it was one of the main factors that contributed to my poor brain function and mental health.

If you’re having trouble with sleep, try this sleep supplement. It contains natural compounds that I’ve used over the years to get deeper and more restful sleep. 

I also work with my clients so that they can naturally produce more melatonin and maximize the quality of their sleep without so many supplements. We have a free online workshop that talks about how you can work with us. You can register for the workshop here.

 

8. Avoid Neurotoxins

Neurotoxins are substances that can interfere with the structure or function of nervous tissue, including the neurons in our brain. 

They can be found in a variety of environmental sources, including certain foods, heavy metals, pesticides, certain types of molds, and even in some household cleaning products. 

Exposure to these neurotoxins can stimulate glutamate activity. Their detrimental impact on the brain can exacerbate the levels of glutamate and the effects of glutamate. They can inhibit the reuptake of glutamate, leading to its accumulation (17). 

Many neurotoxins also increase the excitatory stimulation of neurons, often by mimicking the actions of glutamate. This can lead to an overstimulated, or 'excited', state in the brain that can result in neurotoxicity (18). 

By avoiding neurotoxins, you can help prevent overstimulation and glutamate-induced excitotoxicity.

Many neurotoxins can also trigger inflammation in the brain, which can stimulate the release of glutamate and hinder its clearance (19).

However, reducing your exposure to neurotoxins can reduce chronic inflammation and help regulate glutamate levels.

Avoiding neurotoxins involves lifestyle changes such as: 

  • Choosing organic produce

  • Using natural cleaning products

  • Ensuring good ventilation in your living and working spaces

  • Ensuring safe drinking water

  • Having regular checks for mold or heavy metal exposure

Although complete avoidance may not always be possible due to ubiquitous environmental pollutants, reducing exposure and supporting the body's detoxification pathways can significantly help.

 

9. Stay Hydrated

Water is essential for all bodily functions.

This includes the efficient removal of toxins and waste products that can interfere with the regulation of neurotransmitters, including glutamate.

Water is essential for the proper functioning of the brain's transport systems, which remove excess glutamate and other waste products. 

Without sufficient hydration, these transport systems work less efficiently, leading to an accumulation of glutamate (20). 

So don't wait until you're thirsty to drink water. Make it a habit to sip on water throughout the day.

To stay adequately hydrated, it's generally recommended to consume at least eight 8-ounce glasses of water a day. But this can vary based on individual needs, climate, and activity level. 

Pay attention to signs of dehydration, which can include dry mouth, fatigue, and darker urine.

Athletes or people who exercise regularly may need more fluids to replace the water lost through perspiration.

Furthermore, hydration doesn’t only come from water, but also from consuming a diet rich in fruits and vegetables, which have high water content.

Proper hydration is definitely an easily overlooked but important factor in the optimization of brain function. 

Just make sure you’re drinking the purest water possible. I use a water filter to make sure I’m drinking the purest water available. It filters everything out of the water.

Click here to subscribe

10. Detoxification

Detoxification is the body's natural process of neutralizing or eliminating toxins.

The body accomplishes this primarily through the liver, kidneys, and to some extent, the gastrointestinal tract, skin, and lungs. 

This is an essential aspect of maintaining optimal health.

Toxins can originate from both internal sources (like metabolic byproducts) and external sources (such as pollutants, chemicals, and heavy metals).

Some toxins have neurotoxic properties, which means they can damage neurons or disrupt neuronal function. 

These neurotoxins can contribute to excess glutamate by increasing glutamate release or blocking its reuptake (21). 

By promoting detoxification, you help your body eliminate these toxins and reduce the neurotoxic burden (22). 

As a result, you’re more likely to maintain balanced glutamate levels.

Some toxins can also trigger an inflammatory response, which can increase glutamate levels (23). 

Effective detoxification can help modulate this immune response, helping your body maintain glutamate balance (24). 

If you want to increase detoxification, you can try dry brushing, infrared sauna sessions, or eating lots of antioxidant-rich fruits and vegetables.

Other detoxification strategies include regular exercise, hydration, dietary changes, and the use of specific supplements or therapies that support the liver and other detoxifying organs.

Optimal Antiox can also help with brain detoxification.

 

11. Limit Exposure to Loud Noises

The impact of noise on health is a burgeoning field of study.

Interestingly, prolonged exposure to loud noise has been associated with increased levels of glutamate. 

Research shows that loud noise can release too much glutamate, overwhelming the glutamate receptors. This can then lead to loss of synapses and, eventually, a condition called sensorineural hearing loss (25). 

Chronic noise exposure can also act as a stressor, triggering the release of stress hormones that can increase glutamate levels (26). 

So it’s best to try to limit your exposure to loud noise as much as possible.

Practical strategies for reducing exposure to loud noises include:

  • Using earplugs or noise-canceling headphones in noisy environments

  • Limiting the use of loud machinery or equipment

  • Creating a quiet, peaceful environment at home and at work

Regular hearing checks can also help monitor any potential noise-induced hearing damage.

 

12. Cold Exposure

Cold exposure, or cold thermogenesis, is the process of subjecting your body to cold temperatures to stimulate physiological responses. 

Benefits can range from improved immune function and metabolism to enhanced mood and cognitive function. 

Cold exposure could also influence glutamate regulation. 

In one study, researchers found that glutamate transmission is decreased in the brain during cold exposure (3). 

Cold exposure also promotes the production of GABA, an inhibitory neurotransmitter that counterbalances glutamate's excitatory effects (27). 

Cold exposure can be practiced in various ways, such as taking cold showers, swimming in cold water, or spending time in colder outdoor environments. 

However, it's crucial to approach cold exposure carefully. Extreme cold can be dangerous for some individuals, particularly those with certain health conditions.

Make sure you do this practice safely and within your comfort limits.

I personally take a cold shower every day.

During the winter, I’ll also go outside for short periods of time with hardly any clothes. It boosts my dopamine and increases my motivation.

You don’t have to be that extreme though.

You can start by finishing your next shower with one minute of cold water.

See how it feels, and then over time, increase the amount of time. 

It can be a bit painful.

But the beneficial effects end up being worth it.

Another way is to stick your face, hand or foot in ice cold water.

Or you can try cold plunges, cold baths and even cryotherapy if you want.

Find what works best for you and do it regularly.

Overall, cold exposure is a chilly, but rewarding, journey to enhanced brain function and mental health.

 

The Best Nutrients, Foods and Dietary Changes Proven to to Reduce Excess Glutamate in the Brain

13. Omega-3 Fatty Acids

Omega-3 fatty acids are essential fats that are well-recognized for their wide-ranging health benefits, including cognitive function.

Omega-3 fatty acids include EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid).

These fats are very important for overall brain health.

Many studies show that they significantly reduce brain inflammation; improve memory, mood and cognition; and protect against mild cognitive impairment, dementia and Alzheimer's disease.

They can also help protect against glutamate toxicity.

Glutamate's excitatory action is mediated through calcium channels. Excessive glutamate can over-activate these channels, leading to a harmful influx of calcium into neurons. 

But research suggests that omega-3 fatty acids can help modulate these calcium channels, thereby regulating glutamate-induced excitatory activity (28-29). 

Omega-3 fatty acids can also enhance the function of glutamate transporters, proteins that remove glutamate from the synaptic cleft. This helps prevent excessive glutamate accumulation (30). 

Lastly, chronic inflammation stimulates the excessive release of glutamate and hinders its reuptake, leading to its buildup. But Omega-3 fatty acids have potent anti-inflammatory properties, and by reducing inflammation, they can help maintain balanced glutamate levels (31). 

Omega-3 fatty acids are considered “essential fatty acids”, meaning your body cannot create them. You have to get them from food or supplements.

Food sources of omega-3 fatty acids include: 

  • Fatty fish like salmon, mackerel, and sardines

  • Flaxseeds

  • Chia seeds

  • Walnuts

  • Eggs

These foods are included in my Free Grocery Shopping Guide for Optimal Brain Health.

Supplements, like fish oil, are also commonly used to increase omega-3 intake.

 

14. Magnesium 

Magnesium is an essential mineral involved in more than 300 biochemical reactions in the body.

It plays a vital role in maintaining brain health and regulating neurotransmitter activity, including glutamate.

Glutamate primarily exerts its effects via the N-methyl-D-aspartate (NMDA) receptor. Excessive activation of NMDA receptors by glutamate can lead to neuronal damage, a phenomenon known as excitotoxicity. 

But magnesium acts as a natural blocker of NMDA receptors. When magnesium levels are optimal, it protects against excessive glutamate activity by sitting inside the NMDA receptor's channel and preventing calcium influx (32). 

Research indicates that magnesium also supports the function of glutamate transporters, which are proteins that clear glutamate from the synaptic cleft and prevent excessive accumulation (33-36). 

Magnesium also contributes to the maintenance of the resting membrane potential, which is the electrical charge that exists across the neuronal membrane. This helps to stabilize neurons and protect them from the excitatory effects of glutamate (37-38). 

Lastly, magnesium is involved in the enzymatic conversion of glutamate to GABA, an inhibitory neurotransmitter that counterbalances glutamate's excitatory effects (39). 

There are a number of things you can do to make sure you’re getting enough magnesium, so that you maintain adequate magnesium levels and reduce excessive glutamate.

First, make sure you’re eating magnesium-rich foods on a regular basis, including:

  • Spinach

  • Chard

  • Pumpkin seeds

  • Almonds

  • Avocado

  • Dark chocolate

  • Bananas

These foods are included in my Free Grocery Shopping Guide for Optimal Mental Health.

You can also increase your body’s intake of magnesium by taking Epsom salt baths.

Supplementation is often a good idea for most people because many people are deficient.

Magnesium is included in this supplement.

 

15. Vitamin B6

Vitamin B6, also known as pyridoxine, is a crucial nutrient involved in various biochemical reactions in the body.

It plays a role in protein metabolism, red blood cell formation, and neurotransmitter synthesis.

Vitamin B6 serves as a necessary cofactor for glutamate decarboxylase, which is an enzyme that converts glutamate into GABA. 

GABA is an inhibitory neurotransmitter that counterbalances the excitatory action of glutamate.

As a result, sufficient vitamin B6 can help maintain a balanced excitatory-inhibitory state in the brain (40-41).

Food sources of Vitamin B6 include: 

  • Salmon

  • Chicken

  • Bananas

  • Potatoes

These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

But if you want to see quick improvements, you may want to try supplementing with Vitamin B6.

When I took antidepressants and benzodiazepines for my chronic anxiety, I took a Vitamin B6 supplement.

This is because psychiatric medication can further deplete Vitamin B6, increasing anxiety in the long run.

So if you take medication to manage your anxiety, or you simply have anxiety and want to manage it better, I highly recommend supplementing with Vitamin B6.

That’s why I included it in the Optimal Calm supplement.

Click here to subscribe

16. Vitamin C

Vitamin C, also known as ascorbic acid, is a potent antioxidant known for its immune-supportive properties. 

But its roles extend beyond the immune system.

It also impacts brain health and neurotransmitter regulation, including glutamate.

Some research indicates that vitamin C can inhibit the release of glutamate from neurons. As a result, it can prevent excessive glutamate accumulation in the brain (42-44). 

Vitamin C has also been found to promote the uptake of glutamate by neurons, which helps maintain balanced glutamate levels (42-44).

As you probably know, vitamin C is found in fruits and vegetables such as:

  • Citrus fruits

  • Strawberries

  • Bell peppers

  • Broccoli

  • Kiwi

These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

In addition to getting vitamin C from fruits and vegetables, I take at least 500 mg of supplemental vitamin C every day. It’s included in Optimal Antiox. 

I’ve taken up to 10 grams of vitamin C daily, and it definitely improves mood and reduces stress and anxiety.

 

17. Vitamin E

Vitamin E is a group of fat-soluble compounds known for their potent antioxidant properties. 

It plays a vital role in various physiological processes, including those related to brain health and neurotransmission.

Vitamin E can inhibit the activation of an enzyme known as protein kinase C, which is involved in the release of glutamate (45). 

By doing so, Vitamin E can help control the amount of glutamate released into the brain and prevent excessive glutamate activity (46-47). 

Vitamin E has also been found to inhibit the binding of glutamate to its receptor, the NMDA receptor. By blocking this binding, Vitamin E can help regulate the excitatory effects of glutamate and reduce the risk of excitotoxicity (48-49). 

Sources of Vitamin E include nuts, seeds, spinach and broccoli.

These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

For those who don’t get enough from their diet, Vitamin E supplements are available.

Vitamin E is included in the Optimal Antiox supplement.

 

18. Zinc

Zinc is an essential trace element that's vital for numerous biochemical processes in the body, including immune function, DNA synthesis, wound healing, and growth.

When it comes to brain function and mental health, zinc also plays a key role.

Zinc is known to modulate the function of N-methyl-D-aspartate (NMDA) receptors, which are primarily activated by glutamate. By binding to these receptors at a specific site, zinc can inhibit their activation and reduce the excitatory effects of glutamate (50). 

Zinc can also influence the release of glutamate from nerve cells. Some research suggests that zinc's presence can inhibit the release of glutamate, thus helping prevent an excessive buildup of this neurotransmitter (51). 

I created and take the Optimal Zinc supplement to make sure my zinc levels are optimal. I created it because I want to give my readers the very best zinc supplement so that they can experience superior results. I have found that many zinc supplements on the market fall short. Optimal Zinc includes several other nutrients and co-factors that increase the absorption of zinc.

Besides supplementing with zinc, you should also eat plenty of healthy, whole foods that contain zinc.

Some of the best foods to optimize your zinc levels include:

  • Oysters

  • Grass-fed beef

  • Pumpkin seeds

  • Cashews

  • Mushrooms

  • Spinach

These foods are included in my Free Grocery Shopping Guide for Optimal Mental Health.

 

19. Limit Glutamate-Boosting Additives

A significant part of managing glutamate levels involves taking a close look at your diet.

You especially need to keep an eye on food additives known to increase glutamate levels. 

Key among these are monosodium glutamate (MSG), hydrolyzed vegetable protein, autolyzed yeast, and certain soy products.

Monosodium glutamate (MSG) is a flavor enhancer often used in processed foods, and it contains glutamate. 

By limiting MSG, you can directly reduce your intake of glutamate from dietary sources.

Similar reductions can be achieved by cutting down on hydrolyzed vegetable protein, autolyzed yeast, and certain soy products, all of which contain or lead to the formation of glutamate.

A diet high in these additives can lead to spikes in glutamate levels.

So it’s a good idea to read food labels carefully and avoid these additives.

Some evidence suggests that the glutamate in these food additives is more readily absorbed in the gut compared to naturally occurring glutamate in protein-rich foods (52). 

Therefore, reducing these additives can help lower the amount of glutamate that's available for absorption into the bloodstream and the brain.

These additives are commonly found in processed and fast foods, which are generally lower in nutrients compared to whole foods. 

So, by cutting down on foods containing these additives, you will naturally increase your consumption of healthier nutrient-rich foods. This will improve your overall brain function and mental health as well.

 

20. Limit Artificial Sweeteners (Aspartame)

Artificial sweeteners, particularly aspartame, are widely used in sugar-free and "diet" products, including soft drinks, candy, and baked goods. 

However, they're not just a source of sweet taste. They can also influence your brain function and increase glutamate activity in the brain. 

Some studies suggest that aspartame can increase the release of glutamate in certain parts of the brain, and reducing aspartame intake could lower this risk (53). 

Artificial sweeteners are typically found in processed foods that often lack essential nutrients. So by reducing your intake of aspartame, you'll likely decrease your consumption of processed foods, and end up eating healthier, nutrient-dense foods that are better for your brain and mental health. 

 

21. Limit Alcohol

Alcohol is a neurotoxin. It wreaks havoc on your brain by raising cortisol levels, disrupting the blood-brain barrier, and increasing inflammation and oxidative stress.

It also influences glutamate levels in the brain. 

Alcohol consumption can initially suppress the glutamate system, leading to lower-than-normal levels of activity. 

But then when alcohol consumption is stopped, the brain responds with a surge of glutamate activity, far above normal levels, which can lead to hyperexcitability and withdrawal symptoms (54). 

There are ways to protect your brain from alcohol.

But you’re better off just avoiding it completely or significantly reducing your consumption if you’re trying to heal and recover from chronic health issues. 

I personally don’t drink alcohol at all anymore. It’s just not worth it. 

If you do decide to drink, this article discusses the types of alcohol that are better than others.

 

22. Limit Caffeine

Caffeine is a popular stimulant, known for its capacity to promote alertness and combat fatigue. 

However, it also influences various brain processes, including the regulation of glutamate.

Caffeine works by blocking adenosine receptors in the brain. Adenosine normally dampens neural activity, but when caffeine blocks it, it leads to increased neural firing. This then stimulates the release of neurotransmitters like glutamate, leading to the overstimulation of neurons (55). 

By limiting caffeine, you can maintain a more balanced neural activity and prevent surges in glutamate.

However, it’s important to point out that caffeine is definitely good for overall brain function. There is a lot of research showing it is very healthy and can be protective against dementia.

So you don’t need to eliminate all caffeine from your life. Just try to moderate your intake and reduce how much coffee, tea, and other caffeinated drinks you consume daily. 

And keep in mind that it can disrupt your sleep and make people anxious. I used to not be able to handle any coffee at all. But now that I'm healthy, I can handle it just fine. I drink one cup of high-quality coffee most mornings.

But if you’re struggling with chronic stress and trying to optimize your glutamate system, I would recommend you limit your caffeine intake and avoid high doses of caffeine.

I would also recommend having caffeine-free days and/or stopping caffeine consumption several hours before bedtime to prevent potential sleep disruptions, which can also negatively impact glutamate activity.

An alternative solution is to consume the whole coffee fruit, instead of drinking coffee.

Concentrated coffee fruit extract doesn’t contain caffeine, but it does contain several healthy compounds not found in coffee beans themselves.

Scientists have discovered that ingesting whole coffee fruit concentrate significantly increases brain function. 

Coffee fruit concentrate can be found in the Optimal Brain supplement.

Click here to subscribe

The Best Natural Supplements and Herbs Proven to to Reduce Excess Glutamate in the Brain

23. Probiotics

The human gut is more than just a digestive organ. 

It's also an intricate network of microbes, collectively known as the gut microbiome.

Your gut microbiome contains a variety of probiotics, which play crucial roles in your overall health.

In fact, there's a strong connection between your gut microbiome and brain function, often referred to as the gut-brain axis.

Ensuring a healthy gut microbiome through a balanced diet and probiotics can influence the regulation and balance of neurotransmitters, including glutamate.

Some strains of probiotics are even capable of producing neurotransmitters or their precursors. 

For instance, certain Lactobacillus and Bifidobacterium species can produce GABA, an inhibitory neurotransmitter that counterbalances glutamate (56). 

By enhancing GABA production, these probiotics can help maintain a healthy balance between excitatory and inhibitory signals in the brain.

In one study, researchers found that pure or mixed lactobacillus and bifidobacterium supplements can ameliorate glutamate excitotoxicity (1). 

Lactobacillus and Bifidobacterium are both included in the Optimal Biotics supplement. 

Another study showed that multistrain probiotic supplements can influence glutamine/glutamate metabolism (2). 

Chronic inflammation can also disrupt neurotransmitter regulation and lead to elevated glutamate levels. 

But some probiotics possess anti-inflammatory properties and can help reduce inflammation and improve glutamate regulation (57). 

Probiotics are most commonly found in fermented foods like yogurt, kefir, and sauerkraut

But they can also be consumed through supplements, such as Optimal Biotics.

Check out this article for several other ways to increase good bacteria in your gut.  

And if you struggle with anxiety or depression, here are 9 probiotic strains that can help.

 

24. Theanine

Theanine is an amino acid primarily found in tea leaves.

But it can also be taken as a supplement. 

Theanine is known for its calming effects and ability to enhance focus and cognitive performance.

It crosses the blood-brain barrier and interacts with the brain's neurotransmitter systems, including glutamate.

In fact, theanine acts as a glutamate antagonist. This means it binds to the same receptors in the brain as glutamate, but does not activate them. Instead, it reduces the overall activity of glutamate and prevents overstimulation (58). 

Theanine is also known to increase levels of GABA in the brain. GABA is an inhibitory neurotransmitter that counterbalances the excitatory action of glutamate (59). 

Theanine is definitely one of my favorite compounds for optimal mental health because it stimulates many other neurotransmitters, including dopamine

This stress-relief supplement includes theanine.

 

25. Taurine

Taurine is a sulfur-containing amino acid.

It is widely distributed throughout the body and plays multiple roles in supporting overall health. 

One of its most intriguing functions, however, is its interaction with neurotransmitters, including glutamate.

Taurine is known to interact with the glutamate system in several ways. 

First of all, it acts as a modulator of glutamate activity. It helps to keep glutamate within a healthy range and prevents overexcitation of neurons that can occur with excessive glutamate (60). 

Taurine also enhances the activity of GABA, the primary inhibitory neurotransmitter that counterbalances glutamate (61). 

Lastly, it regulates calcium flow in neurons. The uncontrolled influx of calcium is one mechanism through which excessive glutamate can damage neurons. Therefore, taurine can help protect the brain against the detrimental effects of excess glutamate (62). 

Taurine is mainly found in animal products such as meats and dairy.

If you’re following a vegetarian or vegan diet, or if you struggle with chronic anxiety, I highly recommend supplementing with taurine. 

Taurine is included in the Optimal Calm supplement. 

 

26. GABA Supplements

GABA (gamma-aminobutyric acid) is the main inhibitory neurotransmitter in the brain, acting as a counterbalance to excitatory neurotransmitters like glutamate. 

You can also take GABA as a supplement. 

GABA supplements are often used to promote relaxation, reduce stress, and improve sleep. 

They can also play a significant role in maintaining glutamate levels.

GABA and glutamate function in a sort of seesaw manner. 

When the activity of one increases, the other decreases. By boosting GABA levels, GABA supplements can help keep glutamate levels in check (63). 

Many people claim to experience benefits from taking GABA as a supplement.

However, it's worth noting that there's some debate over the effectiveness of GABA supplements

GABA has difficulty crossing the blood-brain barrier.

As a result, some researchers suggest that the benefits of GABA supplements may actually be due to their effects on the gut-brain axis, rather than a direct increase in brain GABA levels (64). 

I personally don’t recommend taking GABA supplements because in most cases, it simply does not appear to cross the blood-brain barrier. 

I have never found any benefits or noticed any effects (positive or negative) from taking GABA supplements. They never reduced my anxiety, and therefore I don’t feel comfortable recommending them.

You’re better off just taking supplements that naturally increase GABA (such as theanine and taurine) instead of taking GABA supplements directly.

However, there is another related compound called “phenibut” that works and can often help people. 

Phenibut is an altered variation of GABA with powerful anti-stress, anti-anxiety, pro-relaxation and pro-sleep quality effects.

Phenibut can travel across the blood-brain barrier and thus have a very strong effect on sleep quality and anxiety levels.

The problem with Phenibut is that it’s addictive like benzodiazepines and you could experience strong withdrawal effects if you take it regularly and then try to stop it. For this reason, I can’t recommend it.

However, Phenibut is legal in most countries and you can buy it online. If you do decide to use it, you should use it sparingly during special occasions when you really need to reduce your stress and anxiety, such as before an important nerve-wracking public speaking engagement or presentation.

 

27. Resveratrol

Resveratrol is a naturally occurring polyphenol found in grapes, berries, peanuts, and red wine.

It is best known for its antioxidant and anti-inflammatory properties. 

It’s been shown to increase NGF, help restore the integrity of the blood-brain barrier, and support your mitochondria.

However, this compound also interacts with the brain's neurotransmitter systems, including the glutamate pathway.

Research suggests that resveratrol modulates the activity of NMDA receptors, a type of glutamate receptor. It appears to inhibit the overactivation of these receptors, protecting against the harmful effects of excessive glutamate activity (65). 

Studies have also shown that resveratrol can enhance the uptake of glutamate from the synaptic cleft (the gap between neurons where neurotransmitters are released). This can help prevent the accumulation of excess glutamate and protect neurons from overexcitation (66). 

To consume enough resveratrol to reduce glutamate, you’ll need to supplement with it.

Resveratrol is included in this supplement.

 

28. Curcumin

Curcumin is the active component of turmeric, the spice that gives curry its yellow colour.

It is widely recognized for its potent antioxidant and anti-inflammatory properties. 

But its impact extends to the realm of neurotransmission as well, particularly glutamate.

Research indicates that curcumin can influence the activity of NMDA receptors, a specific type of glutamate receptor. It inhibits the overactivation of these receptors, safeguarding against potential harm from an overabundance of glutamate (67). 

Chronic inflammation can disrupt neurotransmitter balance and cause glutamate surges. But curcumin's powerful anti-inflammatory action can help mitigate this risk as well (68). 

Curcumin is included in the Optimal Energy and Optimal Antiox supplements. 

Since curcumin is fat soluble, it’s best absorbed when combined with a fatty meal or taken with fats like coconut oil or olive oil.

 

29. N-Acetyl-Cysteine (NAC)

N-Acetyl-Cysteine (NAC) is a derivative of the amino acid cysteine.

It’s widely used as a supplement due to its antioxidant properties.

It also plays a role in the synthesis of glutathione, a potent antioxidant in the body. 

Beyond these benefits, NAC has a specific interaction with glutamate in the brain.

NAC influences the glutamate system in a unique way by modulating the activity of the cystine-glutamate antiporter, a protein that regulates glutamate release into the synaptic cleft (the space between neurons where neurotransmitters are released).

By promoting the exchange of cystine for glutamate, NAC can help maintain balanced glutamate levels and prevent excessive glutamate activity (69). 

NAC also plays a vital role in the body’s detoxification processes. This can help protect the brain from harmful toxins that can disrupt glutamate regulation.

If you are interested in trying NAC, it’s included in the Optimal Antiox supplement. 

But make sure you read this previous article first to learn how I used NAC to optimize my brain function and mental health.

 

Enjoy This Article? You Might Also Like My FREE Food Guide for Optimal Brain and Mental Health!

Click here to subscribe

Live Optimally, 

Jordan Fallis 

Connect with me

References:

(1) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416367/ 

(2) https://www.ncbi.nlm.nih.ghttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079330/ 

(3) https://mta.cairnrepo.org/islandora/object/mta%3A29243 

(4) hthttps://www.frontiersin.org/articles/10.3389/fpsyg.2018.00509/full 

(5) https://pubmed.ncbi.nlm.nih.gov/12579515/ 

(6) https://pubmed.ncbi.nlm.nih.gov/28579942/ 

(7) https://www.nature.com/articles/nrn3138 

(8) https://pubmed.ncbi.nlm.nih.gov/22216057/ 

(9) https://pubmed.ncbi.nlm.nih.gov/20399151/ 

(10) https://pubmed.ncbi.nlm.nih.gov/22365651/ 

(11) hhttps://pubmed.ncbi.nlm.nih.gov/22365651/ 

(12) https://pubmed.ncbi.nlm.nih.gov/25783612/ 

(13) https://pubmed.ncbi.nlm.nih.gov/23022326/ 

(14) https://www.frontiersin.org/articles/10.3389/fnhum.2017.00051/full 

(15) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880190/ 

(16) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729685/ 

(17) https://pubmed.ncbi.nlm.nih.gov/18941572/ 

(18) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4002277/ 

(19) https://jpet.aspetjournals.org/content/304/1/1 

(20) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2908954/ 

(21) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4002277/ 

(22) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2425011/ 

(23) https://jpet.aspetjournals.org/content/304/1/1 

(24) https://pubmed.ncbi.nlm.nih.gov/19422321/ 

(25) hhttps://pubmed.ncbi.nlm.nih.gov/10842598/ 

(26) https://pubmed.ncbi.nlm.nih.gov/16481110/ 

(27) https://pubmed.ncbi.nlm.nih.gov/15913569/ 

(28) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4404917/ 

(29) https://pubmed.ncbi.nlm.nih.gov/18037281/ 

(30) https://pubmed.ncbi.nlm.nih.gov/26742060/

(31) https://pubmed.ncbi.nlm.nih.gov/28900017/

(32) https://www.nature.com/articles/nrn3504 

(33) https://elifesciences.org/articles/61339 

(34) https://www.ncbi.nlm.nih.gov/books/NBK507250/ 

(35) https://www.ncbi.nlm.nih.gov/books/NBK507254/ 

(36) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6024559/ 

(37) https://pubmed.ncbi.nlm.nih.gov/12495627/ 

(38) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678825/ 

(39) https://www.ncbi.nlm.nih.gov/books/NBK507254/ 

(40) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2248201/ 

(41) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467949/ 

(42) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649700// 

(43) https://pubmed.ncbi.nlm.nih.gov/29164598/ 

(44) https://www.mdpi.com/2076-3921/12/2/231 

(45) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271793/ 

(46) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747438/ 

(47) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5733950/ 

(48) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821814/ 

(49) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492967/ 

(50) https://pubmed.ncbi.nlm.nih.gov/18353558 

(51) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1464795/ 

(52) https://pubmed.ncbi.nlm.nih.gov/11657840// 

(53) https://pubmed.ncbi.nlm.nih.gov/28198207/ 

(54) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4365688/ 

(55) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846529// 

(56) https://pubmed.ncbi.nlm.nih.gov/22612585/ 

(57) https://pubmed.ncbi.nlm.nih.gov/28555037/ 

(58) https://pubmed.ncbi.nlm.nih.gov/17182482/ 

(59) https://pubmed.ncbi.nlm.nih.gov/12499631/ 

(60) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2994408/ 

(61) https://pubmed.ncbi.nlm.nih.gov/18171928/ 

(62) https://pubmed.ncbi.nlm.nih.gov/12908639 

(63) https://www.frontiersin.org/articles/10.3389/fpsyg.2015.01520/full 

(64) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6005194/ 

(65) https://pubmed.ncbi.nlm.nih.gov/22709670// 

(66) https://pubmed.ncbi.nlm.nih.gov/17554623/ 

(67) https://pubmed.ncbi.nlm.nih.gov/22359574/ 

(68) https://pubmed.ncbi.nlm.nih.gov/34754179 

(69) https://pubmed.ncbi.nlm.nih.gov/21118657/ 

(70) https://pubmed.ncbi.nlm.nih.gov/24361499/ 

(71) https://www.semanticscholar.org/paper/Excitotoxicity-and-nitric-oxide-in-Parkinson%27s-Beal/46eaa5bfb2c8dc0b2fcf903a848f5e37c86231a6 

(72) https://pubmed.ncbi.nlm.nih.gov/22646481/ 

(73) https://pubmed.ncbi.nlm.nih.gov/12925363/ 

(74) https://pubmed.ncbi.nlm.nih.gov/28187219/ 

(75) https://pubmed.ncbi.nlm.nih.gov/10986805/ 

(76) https://pubmed.ncbi.nlm.nih.gov/17574216// 

(77) https://www.nature.com/articles/nature08673 

(78) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327935/ 

(79) https://pubmed.ncbi.nlm.nih.gov/14723991/ 

(80) https://www.nature.com/articles/nrn1722 

(81) https://pubmed.ncbi.nlm.nih.gov/12490568/ 

(82) https://pubmed.ncbi.nlm.nih.gov/19951898/ 

(83) https://pubmed.ncbi.nlm.nih.gov/16473439/ 

(84) https://pubmed.ncbi.nlm.nih.gov/24361499/ 

(85) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187770/ 

(86) https://pubmed.ncbi.nlm.nih.gov/16192835/ 

(87) https://pubmed.ncbi.nlm.nih.gov/22318195/

(88) https://pubmed.ncbi.nlm.nih.gov/19828810// 

(89) https://pubmed.ncbi.nlm.nih.gov/21827775/ 

(90) https://pubmed.ncbi.nlm.nih.gov/22306277/

(91) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3446237/

Terms and Conditions

Privacy Policy

Affiliate Disclosure

Disclaimer

22 Proven Ways to Increase Brain Blood Flow

Without a doubt, healthy blood flow is absolutely essential for optimal brain function and mental health.

Brain blood flow, or cerebral blood flow, refers to the blood supply that reaches your brain during a given period of time. 

Your brain needs almost 20% of the blood supply provided by each heartbeat.

A steady flow of blood brings oxygen, glucose and nutrients to the brain, and carries carbon dioxide, lactic acid, and other metabolic waste products away from the brain.

But when blood flow to the brain is hindered, cognitive problems can arise.

Poor brain blood flow and circulation are linked to a number of brain and mental illnesses, including:

Increasing blood flow to the brain might be an effective therapeutic approach to prevent or treat Alzheimer’s.
— Dr. Robert Vassar

Some of the main causes of poor brain blood flow include abnormal blood pressure, poor circulation, low thyroid, infections, and stress (126-130). 

Besides addressing these major causes, there are several ways to directly increase the amount of oxygen-rich blood that flows to your brain.

Researchers use neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), to measure cerebral blood flow.

And they have found that the following 22 methods increase brain blood flow and circulation in humans. 

After suffering multiple concussions, I had severe depression and brain fog. So I had no choice but to focus on optimizing brain blood flow and circulation.

Many of these methods have been helpful to me over the years.

If you want to naturally increase blood flow to your brain, continue reading to learn more.

An illustration of a person’s head, their brain, and blood flowing through the brain.

1. Exercise

Exercise is one of the best and most accessible ways to increase brain blood flow and circulation. 

Research shows that moderate exercise increases blood flow to the brain by as much as 15% (1). 

And you don’t even need to work out intensely to increase blood flow to your brain.

Simply walking for 30 minutes at a brisk pace, three or four times each week, is good enough. That will get more blood and oxygen to your brain and you’ll reap the benefits (2). 

In fact, the foot’s impact on the ground while walking sends pressure waves through the arteries, which sends more blood and oxygen to the brain (3). 

There are many studies that suggest that exercise improves brain function in older adults, but we don’t know exactly why the brain improves. Our study indicates it might be tied to an improvement in the supply of blood flow to the brain.
— Dr. Rong Zhang

Exercise has also been shown to protect against cognitive decline and dementia, promote neurogenesis, help reverse brain damage, and promote the regeneration of myelin.

So not surprisingly, exercise is recommended by many experts and it’s often their number one piece of advice for optimal brain health.

My usual advice is to find a sport or exercise routine that you enjoy, so that you’ll stick with it consistently.

 

2. Cold Exposure

Exposing yourself to cold temperatures can also help you get more blood flowing to your brain. 

Research shows that putting your hand in ice water for one minute can significantly increase the speed of blood flow to the brain (6-8). 

A tough looking guy with a mustache with his fists up in the air ready to fight. It says over the image “Have a cold shower? You mean a shower?”

Researchers have also found that cooling the skin during upright tilting maintains the speed of blood flow to the brain (5). 

Animal studies also show that cold exposure significantly increases cerebral blood flow (4). 

I take a cold shower every day, and often go outside with minimal clothing in the winter to increase my blood flow and circulation. 

You don’t have to do that right away though. You can take it one baby step at a time.

You can start out by finishing your next shower with just 30 seconds of cold water.

See how you feel, and then work your way up to longer.

It can be a bit painful, but you get used to it and the beneficial effects are worth it.

Another way to ease yourself into it is by sticking your face, hand or foot in ice cold water.

Cold exposure also stimulates the vagus nerve and supports the endocannabinoid system

 

3. Sunlight

A picture of the sun shining through the clouds around it. Sunlight can increase blood flow to the brain.

Research also shows that light stimulates brain blood flow and circulation.

Positron emission technology (PET) measures blood flow to specific areas of the brain.

In one study, researchers used PET scans to monitor cerebral blood flow in patients with season affective disorder (SAD) – before and after light therapy

Before light therapy, the scans show that patients had reduced blood flow to the cerebral cortex, the “executive” part of the brain.

But after just a few days of light therapy, this part of the brain started to light up, indicating greater activity and increased blood flow (9).

But this isn’t just seen in depressed individuals.

Another study found that 10 minutes of light exposure can increase brain blood flow in healthy people (10). 

Light therapy even increases brain blood flow in pre-term infants (11). 

I personally get sunlight every day during the spring and summer months to support my brain health. It’s a simple way for me to increase blood flow to my brain every day.

Researchers have also found a positive correlation between Vitamin D levels and brain blood flow (94).

So I take a Vitamin D3 supplement during the winter months when there isn't enough sun.

It's important to test and monitor your Vitamin D levels before and after supplementing with it.

 

4. Ginkgo Biloba

Ginkgo Biloba is a plant that has been used for thousands of years to treat a number of health problems.

Today, it’s one of the most popular herbal supplements in the world.

Doctors even prescribe it in Germany!

It’s most commonly used to improve brain health.

Researchers have found that it increases cognitive function, and improves memory and attention in both healthy and unhealthy individuals. It even reduces the risk of dementia and Alzheimer’s disease (15). 

These positive effects are mainly because it significantly increases blood flow to the brain and increases blood circulation in the brain (12-14). 

Gingko biloba is included in the Optimal Brain supplement

Click here to subscribe

5. Low-Level Laser Therapy (LLLT)

Low-level laser therapy (LLLT), or photobiomodulation, is a treatment that uses red and infrared light to support brain function.

The treatment uses either low-power lasers or light-emitting diodes (LEDs) that emit red and infrared light.

The red and infrared light is applied to the brain, and it stimulates brain cells, helping them helping them function better.

Most doctors are clueless about LLLT; but not every doctor. 

A man wears on LLLT helmet and uses the Vielight intranasal device. LLLT can increase brain blood circulation and increase blood flow to the brain.

Dr. Norman Doidge, a physician who teaches at the University of Toronto here in Canada, discusses the amazing effects of LLLT in his book The Brain’s Way of Healing.

One way LLLT can help the brain is by increasing brain blood flow and circulation. 

One study found that applying near infrared light to the forehead can help treat depression and anxiety (without side effects) by increasing frontal regional cerebral blood flow (49).

Another study saw improvement in brain blood flow in healthy elderly women (50). 

Animal research has also found that light can be used to locally increase brain blood circulation (93). 

I previously wrote about my experience with low-level laser therapy here.

I have used the Optimal 1000 Brain Photobiomodulation Therapy Light (Combo Red/NIR) and shine the red and infrared light directly on my forehead. It’s a simple way for me to quickly and naturally increase blood flow to the brain.

When I’m travelling and away from home, I take this smaller and more convenient device with me and shine it on my forehead.

I’ve also used the Vielight Neuro Duo, which is a transcranial-intranasal headset with 810 nm of near infrared light. It penetrates deeper into brain tissue and is absorbed better by the central nervous system. If you decide to try a Vielight device, you can use the coupon code JORDANFALLIS for a 10% discount

LLLT can also support thyroid function and mitochondria function and help with brain fog

 

6. Vinpocetine

Vinpocetine is a compound from the Periwinkle plant. 

It’s commonly used in Europe to treat cognitive decline, memory impairments, stroke recovery, and epilepsy.

Researchers have found that it increases brain blood flow in both healthy people and stroke victims.

The increase in brain blood flow leads to increased brain oxygen levels and energy production, reduced brain inflammation, and improved reaction time (16-25). 

I took a vinpocetine supplement many years ago after my last concussion to increase blood flow to the brain and speed up my recovery. But I no longer need to take it.

 

7. Meditation

Meditation is my favourite relaxation technique and it's linked to increased blood flow in the brain.

In one study, 14 people with memory problems followed a simple 8-week meditation program. And researchers found a significant increase in blood flow to the prefrontal cortex (31). 

Logical memory and verbal fluency also improved after training (31). 

Another study showed that just five days of meditation (30 minutes each day) significantly enhanced brain blood flow (32). 

I have used the Muse headband to meditate. It gives you real-time feedback while you meditate. That way, you know how well you are meditating. It makes meditating much more enjoyable.

I previously wrote about it here, and you can get it through the Muse website.

 

8. Resveratrol

Resveratrol is a beneficial antioxidant and anti-inflammatory compound.

Many people know that it’s found in grapes, red wine, raspberries and dark chocolate.

A glass of red wine and red grapes. Red wine and red grapes contain resveratrol, an antioxidant that can increase blood flow to the brain.

Resveratrol is known to help prevent the development of neurodegenerative diseases.

And researchers are starting to understand why.

Resveratrol can increase BDNF, help restore the integrity of the blood-brain barrier, and support your mitochondria.

But it can also help you quickly get more blood and oxygen flowing to your brain. 

In one study, after taking either 250 or 500 milligrams of resveratrol, study participants experienced a dose-dependent increase in brain blood flow (26). 

Even just 75 mg has been shown to increase brain circulation and cognition (27, 29). 

And a recent study found that chronic resveratrol supplementation increases brain blood circulation in post-menopausal women, improving their cognition and mood (28, 30). 

Resveratrol is included in this supplement.

 

9. Dark Chocolate

Most people love chocolate, and your brain loves it too. 

Dark chocolate contains cocoa, which is known to improve blood flow. 

It's one of my favourite foods, and it’s included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

Research suggests that the flavonoids found in cocoa beans increase blood flow to key areas of the brain for two to three hours after eating them. And this leads to an improvement in cognitive performance and general alertness (33, 35). 

Certain food components like cocoa flavanols may be beneficial in increasing brain blood flow and enhancing brain function among older adults or for others in situations where they may be cognitively impaired, such as fatigue or sleep deprivation.
— Dr. Ian A. Macdonald, PhD, from the University of Nottingham Medical School in the United Kingdom

One study found that flavanol-rich cocoa significant increases the speed of brain blood flow in healthy elderly people (34). 

Another study found that drinking two cups of hot chocolate a day for 30 days was linked to improved blood flow to the brain and better memory (36). 

Dark chocolate also increases BDNF and reduces cortisol.

It’s important to choose a type of dark chocolate with at least 70 percent cocoa.

Click here to subscribe

10. Omega-3 Fatty Acids

Omega-3s fatty acids are the highest quality fats for the brain.

They are essential, meaning your body cannot create them and you have to get them from food or supplements.

Making sure you get more omega-3s is one of the most important actions you can take to support your brain and nervous system.

Many studies show that they significantly reduce brain inflammation; improve memory, mood and cognition; and protect against mild cognitive impairment, dementia and Alzheimer's disease.

They also naturally increase brain blood flow and circulation. 

Research shows that higher omega-3 levels are significantly correlated with higher regional cerebral blood flow (37). 

This is very important research because it shows a correlation between lower omega-3 fatty acid levels and reduced brain blood flow to regions important for learning, memory, depression and dementia.
— Dr. Daniel G. Amen, MD, Amen Clinics

And one study found that omega-3 supplementation, in comparison with placebo, significantly increased brain blood flow (38). 

Omega-3 fatty acids are found in cold water fish such as salmon, black cod, sablefish, sardines and herring.

These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

Unfortunately, most people don't consume enough of these foods.

So supplementing with krill oil should be considered.

Krill oil is a special kind of fish oil that readily crosses the blood-brain barrier. I’ve tried tons of fish oil supplements, and I recommend krill oil over all the others.

 

11. Acupuncture

Acupuncture is an alternative treatment that has been shown to increase brain blood flow and circulation.

In a randomized controlled trial, 17 post-stroke patients did acupuncture or sham acupuncture for 20 minutes.

The researchers found that the speed of blood flow to both hemispheres of the brain significantly increased during and after acupuncture treatment (39, 42). 

Research has also shown that acupuncture can significantly improve cerebral blood flow and circulation in animals (40-41, 43). 

I’m a really big fan of auricular acupuncture, which is when the needles are inserted into ear.

In my experience, ear acupuncture is more effective than regular acupuncture. I’m not sure why. I’ve just personally noticed more benefits from ear acupuncture. 

I’d recommend trying to find an acupuncturist in your area who provides ear acupuncture.

Ear acupuncture really helped me the first time I weened off antidepressants. I was surprised.

At the end of each appointment, my practitioner would secure small black seeds on my ear. 

I have also used an acupuncture mat at home to relax before bed.

Acupuncture also stimulates the vagus nerve

 

12. Chewing Gum

Research reveals that chewing increases brain blood flow (44). 

As a result, chewing can improve cognitive performance and brain function, including working and spatial memory. It also increases the level of arousal and alertness during a cognitive task (45). 

If you chew gum, make sure it’s aspartame-free.

Chewing gum also reduces cortisol

 

13. Acetyl-L-Carnitine (ALCAR) 

Acetyl-L-carnitine (ALCAR) is an acetylated form of the amino acid carnitine. 

It’s known to help reverse neurological decline by increasing levels of acetylcholine in the brain.

It’s often used as a brain booster by people of all ages because it support brain cells and increases alertness.

It’s also been shown to be very effective at alleviating chronic fatigue and improving mood by supporting mitochondrial function.

Considering all of this, it’s not too surprising that researchers have also found that it can enhance brain blood flow in people who have had a stroke (46-47). 

ALCAR is included in the Optimal Brain supplement

Make sure you read this article to learn more about the remarkable benefits of ALCAR.

Click here to subscribe

14. Nitrates

Nitrates are both naturally-occurring compounds found in soil and plants.

High levels of nitrates are found in foods such as beets, celery, cabbage, spinach, and other leafy green vegetables.

These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

Research shows that a nitrate-rich diet can increase blood flow to the frontal lobe of the brain, improving cognitive function and protecting against cognitive decline (51-52). 

Beet juice is a particularly rich source of nitrates, and studies have found that it can help widen blood vessels and increase oxygen and blood flow to the brain (53-54, 56). 

A double-blind, placebo-controlled trial even found that beet juice can improve cognitive performance by increasing brain blood flow (55). 

There have been several very high-profile studies showing that drinking beet juice can lower blood pressure, but we wanted to show that drinking beet juice also increases perfusion, or blood flow, to the brain. There are areas in the brain that become poorly perfused as you age, and that’s believed to be associated with dementia and poor cognition.
— Dr. Daniel Kim-Shapiro, PhD

I don’t really enjoy the taste, but every so often, I’ll drink beet juice during cognitively-demanding tasks. 

 

15. Drink Less Coffee (Or Take Theanine)

Coffee is generally excellent for brain health. There is a lot of research showing it is very healthy and can be protective against dementia.

However, studies also show that if you want to get more blood flowing to your brain and within you brain, you’re better off avoiding or limiting caffeine. 

A cup of coffee on a plate with a spoon. Coffee and caffeine reduce blood flow to the brain. So you should try to limit your intake of them. Or take it with theanine instead.

Researchers have found that caffeine significantly reduces brain blood flow by 20 to 30% depending on the study and dosage (74-77). 

The good news is that taking the amino acid theanine can reduce the negative brain blood flow effects of caffeine (78-79). 

That’s why I often take a theanine supplement when I drink coffee.

Theanine is included in this anti-anxiety supplement.

I also often take breaks from drinking coffee to normalize brain blood flow and circulation. 

Taking the herb rhodiola can make quitting caffeine much easier because it helps reduce withdrawal symptoms.

Lastly, you could also try supplementing with the whole coffee fruit, instead of just drinking coffee.

The coffee bean is usually separated from the coffee fruit for roasting. When this happens, the surrounding coffee fruit is then thrown away. 

That’s a problem because the coffee fruit contains several healthy compounds not found in coffee beans themselves.

In fact, scientists have discovered that ingesting coffee fruit concentrate significantly increases brain function. 

That’s why coffee fruit concentrate is included in Optimal Brain.

 

16. Piracetam

Piracetam is a “nootropic”, which means it’s a supplement that enhances cognition.

It provides a mild boost in brain function, and it’s regularly used in Europe, Asia and South America to treat cognitive impairment

A meta-analysis found that piracetam improves general cognition when supplemented by people in a state of cognitive decline (84). 

Research also shows that it can increase brain blood flow in humans and animals (85-91). 

I used to take piracetam every day but I don’t need it at all anymore.

Phenylpiracetam is an advanced version of piracetam and I found it to be even better because it improves mood and reduces anxiety. It’s also been shown to reverse the depressant effects of benzodiazepines (81-83).

Both piracetam and phenylpiracetam work best if you take them with a source of choline, such as CDP-Choline and Alpha GPC (80). 

 

17. Ketogenic Dieting

A ketogenic diet is a very low-carbohydrate diet.

To follow the diet correctly, you need to eat less than 50 grams of carbohydrates per day.

This means you need to avoid all carbohydrate-rich foods, including grains, sugar, and even potatoes, legumes and fruit.

When you restrict carbs this much, your body enters ketosis, a metabolic state in which your body and brain run on fatty acids and “ketones” instead of glucose.

Researchers have found that ketones are a therapeutic option in traumatic brain injury because they can increase brain blood flow by 39% (100). 

Studies have also shown that ketones increase cerebral blood flow by 65% in animals (103-104). 

Caloric restriction also increases ketones, which preserves cerebral blood flow in aging rats (102). 

I follow a ketogenic diet every so often, but not for long stretches of time due to hormone problems that can result from it.

 

18. Citicoline

Citicoline (also known as CDP-Choline) is one of the most bioavailable forms of choline.

You need to get choline from food. But most people don’t get enough because very few foods in the Western diet contain it.

That’s why supplementation is often necessary.

Citicoline is a supplemental form of choline that has anti-inflammatory and neuroprotective effects.

It enhances the synthesis of acetylcholine and dopamine (two neurotransmitters that are critical for optimal brain function) and increases the number of acetylcholine and dopamine receptors in your brain (105-110). 

It’s also been shown to improve cognitive function by increasing the rate of brain blood flow (114-116). 

A double-blind placebo-controlled study concluded that Citicoline improves cognitive performance in patients with Alzheimer’s disease by increasing brain blood flow (113). 

I found that citicoline improved my focus and mental energy. It's included in the Optimal Brain supplement

You can also find some choline in foods such as beef liver and egg yolks. These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

But the effects of Citicoline are much more noticeable and immediate because it quickly passes the blood-brain barrier and supports your brain.  

Citicoline also promotes the regeneration of myelin, supports the blood-brain barrier, and helps reverse brain damage.

Make sure you read this article to learn more about the remarkable benefits of Citicoline.

Click here to subscribe

19. Blueberry Juice

Drinking blueberry juice improves cognitive function in the elderly, according to research published (123-125). 

One way it improved brain health was by increasing oxygen levels and increasing blood flow to the brain.

The participants had improvements in working memory while doing cognitive testing.

In this study we have shown that with just 12 weeks of consuming 30ml of concentrated blueberry juice every day, brain blood flow, brain activation and some aspects of working memory were improved in this group of healthy older adults.
— Dr. Joanna Bowtell

The amount of juice in the study was equivalent to 230g of blueberries.

The researchers believe that the flavonoids in blueberries were responsible for the positive effects.  

 

20. Pyrroloquinoline Quinone (PQQ)

Pyrroloquinoline quinone (PQQ) is a vitamin-like enzyme and potent antioxidant found in plant foods that can improve cognitive function.

Researchers have found that supplementing with PQQ can increase blood flow to the prefrontal cortex (117-118). 

One study found that PQQ can prevent the reduction of brain function in elderly people, especially in attention and working memory, by increasing brain blood flow (119). 

 

21. Intranasal Insulin

Insulin is one of the hormones that significantly affects brain function.

It's been shown to pass the blood-brain barrier and act on insulin receptors directly within the brain.

An elderly man sprays insulin up his nose. Intranasal insulin has been shown to increase blood flow to the brain.

In a new therapeutic approach, commercially-available insulin (Novalin R) is prepared and added to nasal spray bottles, and sprayed and inhaled through the nose to support brain and mental health.

Intranasal insulin has been reported to significantly enhance memory, increase mental energy, reduce brain fog, improve mood, and lower anxiety and stress levels.

One possible mechanism is by increasing brain blood flow and circulation.

Research shows that intranasal insulin increases regional cerebral blood flow in the insular cortex (120, 122). 

In a randomized, double-blinded, placebo-controlled, intranasal insulin improved brain blood flow in older adults (121).

If you’re interested in learning more, I previously wrote a full article about intranasal insulin.

 

22. Music

I previously wrote about how music naturally reduces cortisol, helps treat OCD, and increases dopamine and oxytocin

But now it looks like it also increases blood flow to the brain.

Researchers found that musical training or listening to music increases blood flow to the brain (145-146).

It’s even more effective when you’re learning or listening to music that you really enjoy.

 

23. BONUS: Other Promising Nutrients and Herbs

Researchers have found that the following compounds can increase cerebral blood flow in animals. But I couldn’t find any research showing that it will do the same in humans. However, they are worth experimenting with as many of them have been effective at supporting my brain and mental health over the years.

A picture of the brain and nervous system.
 

Enjoy This Article? You Might Also Like My FREE Food Guide for Optimal Brain and Mental Health!

Click here to subscribe

Live Optimally,

Jordan Fallis

Connect with me

References:

(1) http://www.the-aps.org/mm/hp/Audiences/Public-Press/Archive/2011/9.html

(2) https://www.sciencedaily.com/releases/2011/04/110412131921.htm

(3) http://www.nmhu.edu/research-shows-walking-increases-blood-flow-brain/

(4) https://www.ncbi.nlm.nih.gov/pubmed/754495

(5) https://www.ncbi.nlm.nih.gov/pubmed/12070190

(6) https://www.ncbi.nlm.nih.gov/pubmed/8706113

(7) https://www.ncbi.nlm.nih.gov/pubmed/22104537

(8) https://www.ncbi.nlm.nih.gov/pubmed/27206903

(9) https://goo.gl/NKCSF1

(10) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819153/

(11) http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8749.2004.tb00460.x/abstract

(12) https://www.ncbi.nlm.nih.gov/pubmed/12905098

(13) http://www.ncbi.nlm.nih.gov/pubmed/25966264

(14) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163160/

(15) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679686/

(16) https://examine.com/supplements/vinpocetine/

(17) https://www.ncbi.nlm.nih.gov/pubmed/15760651

(18) https://www.ncbi.nlm.nih.gov/pubmed/12498034

(19) https://www.ncbi.nlm.nih.gov/pubmed/12460136

(20) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1429914/

(21) https://www.ncbi.nlm.nih.gov/pubmed/12044859

(22) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274818/

(23) https://www.ncbi.nlm.nih.gov/pubmed/23289173

(24) https://www.ncbi.nlm.nih.gov/pubmed/25548768

(25) https://www.ncbi.nlm.nih.gov/pubmed/19135345

(26) https://www.ncbi.nlm.nih.gov/pubmed/20357044

(27) https://www.ncbi.nlm.nih.gov/pubmed/27105868

(28) https://www.ncbi.nlm.nih.gov/pubmed/28054939

(29) https://www.ncbi.nlm.nih.gov/pubmed/27420093

(30) https://www.ncbi.nlm.nih.gov/pubmed/27005658

(31) https://www.ncbi.nlm.nih.gov/pubmed/20164557

(32) http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00212/full

(33) http://www.medsci.org/press/cocoa.html

(34) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518374/

(35) https://www.ncbi.nlm.nih.gov/pubmed/16794461

(36) https://www.eurekalert.org/pub_releases/2013-08/aaon-cmh073113.php

(37) https://www.ncbi.nlm.nih.gov/pubmed/28527220

(38) http://www.sciencedirect.com/science/article/pii/S0301051111002584

(39) https://www.ncbi.nlm.nih.gov/pubmed/26569545

(40) https://www.ncbi.nlm.nih.gov/pubmed/19358505

(41) http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0056736

(42) https://goo.gl/XZqLQd

(43) https://www.ncbi.nlm.nih.gov/pubmed/24006668

(44) https://www.ncbi.nlm.nih.gov/pubmed/9134116

(45) http://www.medsci.org/v11p0209.htm

(46) https://www.ncbi.nlm.nih.gov/pubmed/2068049

(47) https://www.ncbi.nlm.nih.gov/pubmed/2387659

(48) http://www.sciencedirect.com/science/article/pii/S1673537407600383

(49) https://www.ncbi.nlm.nih.gov/pubmed/19995444

(50) https://www.ncbi.nlm.nih.gov/pubmed/25277249

(51) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575935/

(52) http://www.webmd.com/brain/news/20101103/beet-juice-good-for-brain#1

(53) https://goo.gl/oeTwfb

(54) http://www.webmd.com/brain/news/20101103/beet-juice-good-for-brain#1

(55) https://www.ncbi.nlm.nih.gov/pubmed/26037632

(56) https://www.ncbi.nlm.nih.gov/pubmed/27630836

(57) https://www.ncbi.nlm.nih.gov/pubmed/16912655

(58) https://www.ncbi.nlm.nih.gov/pubmed/17459424

(59) https://www.ncbi.nlm.nih.gov/pubmed/12614590

(60) http://www.sciencedirect.com/science/article/pii/S0026286207000258

(61) http://onlinelibrary.wiley.com/doi/10.1002/ana.410150507/abstract

(62) https://www.sciencedaily.com/releases/2014/04/140429085116.htm

(63) https://goo.gl/x39wBK

(64) http://journals.sagepub.com/doi/abs/10.1038/jcbfm.2011.85

(65) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746283/

(66) https://www.ncbi.nlm.nih.gov/pubmed/22447676

(67) http://www.sciencedirect.com/science/article/pii/S0024320509004627

(68) https://www.ncbi.nlm.nih.gov/pubmed/19925811

(69) https://www.ncbi.nlm.nih.gov/pubmed/12466053

(70) https://goo.gl/JLo2KP

(71) https://www.ncbi.nlm.nih.gov/pubmed/23685189

(72) https://www.ncbi.nlm.nih.gov/pubmed/28325558

(73) https://goo.gl/ffuYWA

(74) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748160/

(75) https://www.ncbi.nlm.nih.gov/pubmed/15132312/

(76) https://www.ncbi.nlm.nih.gov/pubmed/2122148/

(77) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677118/

(78) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4480845/

(79) https://www.ncbi.nlm.nih.gov/pubmed/25761837

(80) https://www.ncbi.nlm.nih.gov/pubmed/7301036

(81) https://link.springer.com/article/10.2165/11319230-000000000-00000

(82) https://www.ncbi.nlm.nih.gov/pubmed/21689376

(83) https://www.ncbi.nlm.nih.gov/pubmed/6403074

(84) https://examine.com/supplements/piracetam/

(85) https://www.ncbi.nlm.nih.gov/pubmed/3556550

(86) https://www.ncbi.nlm.nih.gov/pubmed/21183904

(87) https://goo.gl/Uf4XQU

(88) https://www.ncbi.nlm.nih.gov/pubmed/4026900

(89) https://www.ncbi.nlm.nih.gov/pubmed/8876930

(90) https://www.ncbi.nlm.nih.gov/pubmed/10978039

(91) https://www.ncbi.nlm.nih.gov/pubmed/17523446

(92) https://goo.gl/JYEMNd

(93) https://www.nature.com/articles/ncomms14191

(94) https://www.ncbi.nlm.nih.gov/pubmed/22773150

(95) https://www.ncbi.nlm.nih.gov/pubmed/3810733

(96) https://www.ncbi.nlm.nih.gov/pubmed/3446252

(97) https://www.ncbi.nlm.nih.gov/pubmed/20096732

(98) https://goo.gl/rHW2KD

(99) https://www.ncbi.nlm.nih.gov/pubmed/27156064

(100) https://www.ncbi.nlm.nih.gov/pubmed/8967461

(101) https://ccforum.biomedcentral.com/articles/10.1186/cc10020

(102) https://goo.gl/KRZ9oy

(103) https://www.ncbi.nlm.nih.gov/pubmed/16001018

(104) http://journals.sagepub.com/doi/full/10.1038/sj.jcbfm.9600177

(105) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695184/

(106) http://www.ncbi.nlm.nih.gov/pubmed/11796739

(107) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1430829/

(108) https://www.ncbi.nlm.nih.gov/pubmed/1839138

(109) https://www.ncbi.nlm.nih.gov/pubmed/1098982

(110) http://www.ncbi.nlm.nih.gov/pubmed/19351232

(111) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011061/

(112) https://www.ncbi.nlm.nih.gov/pubmed/16055952

(113) https://www.ncbi.nlm.nih.gov/pubmed/10669911

(114) https://www.ncbi.nlm.nih.gov/pubmed/1098982

(115) https://www.ncbi.nlm.nih.gov/pubmed/7820960

(116) https://www.ncbi.nlm.nih.gov/pubmed/7913981/

(117) https://link.springer.com/chapter/10.1007/978-3-319-38810-6_29

(118) https://www.ncbi.nlm.nih.gov/pubmed/27526146

(119) https://www.ncbi.nlm.nih.gov/pubmed/26782228

(120) https://www.ncbi.nlm.nih.gov/pubmed/23907764

(121) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391232/

(122) http://onlinelibrary.wiley.com/doi/10.1002/hbm.22304/abstract

(123) https://www.ncbi.nlm.nih.gov/pubmed/28249119

(124) http://www.exeter.ac.uk/news/featurednews/title_572581_en.html

(125) https://www.sciencedaily.com/releases/2017/03/170307100356.htm

(126) https://www.ncbi.nlm.nih.gov/pubmed/20453669

(127) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3539653/

(128) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3246784/

(129) https://www.ncbi.nlm.nih.gov/pubmed/15118175

(130) https://www.ncbi.nlm.nih.gov/pubmed/14757593

(131) https://www.ncbi.nlm.nih.gov/pubmed/28155036

(132) https://www.ncbi.nlm.nih.gov/pubmed/28506213

(133) https://www.ncbi.nlm.nih.gov/pubmed/15929050

(134) https://www.ncbi.nlm.nih.gov/pubmed/17088679

(135) https://www.ncbi.nlm.nih.gov/pubmed/10867218

(136) https://www.ncbi.nlm.nih.gov/pubmed/9682941

(137) http://jamanetwork.com/journals/jamapsychiatry/fullarticle/481961

(138) https://www.ncbi.nlm.nih.gov/pubmed/12742675

(139) https://www.ncbi.nlm.nih.gov/pubmed/9373423

(140) https://www.ncbi.nlm.nih.gov/pubmed/21167506

(141) https://www.ncbi.nlm.nih.gov/pubmed/7496746

(142) https://www.ncbi.nlm.nih.gov/pubmed/1919689

(143) http://neuro.psychiatryonline.org/doi/abs/10.1176/jnp.15.3.326

(144) http://jamanetwork.com/journals/jamaneurology/fullarticle/783869

(145) https://www.sciencedaily.com/releases/2017/04/170412181341.htm

(146) https://www.medicalnewstoday.com/articles/276595

Terms and Conditions

Privacy Policy

Affiliate Disclosure

Disclaimer

How to Reverse Dementia Naturally with The Bredesen Protocol

You may be doubtful that reversing cognitive decline and dementia is even possible.

I used to be too. 

But I want to point you to an amazing study published in the Aging Journal

Read more

How EMFs and WiFi Can Make Your Mental Health Worse

You often hear that modern life is making us sick.

It’s true. A lot of people are suffering from diseases of civilization – including neurodegenerative and psychiatric illnesses – because there is a mismatch between our ancient physiology and the western diet and lifestyle (1). 

Most people are aware of some of the causes – poor dietary choices, nutrient deficiencies, excess stress, emotional trauma, lack of exercise, etc. 

But what if there was something in our modern environment that we couldn’t see that was making us sick?

Well, over the past several months, I’ve been learning more and more about the brain and mental health effects of man-made electromagnetic fields (EMFs). 

They’re actually a huge problem.

An increasing amount of scientific research is showing that they can cause widespread neuropsychiatric effects, including depression (2).

Learning about this inspired me to go live in the woods for 11 days. Yes, I’m serious :-) 

Read on to learn more about EMFs and my experience getting completely away from them. 

An illustration demonstrating EMFs in our environment.

Researchers and Doctors Are Sounding the Alarm about the Brain and Mental Health Effects of EMFs

“I have no doubt in my mind that at the present time, the greatest polluting element in the earth’s environment is the proliferation of electromagnetic fields. I consider that to be far greater on a global scale, than warming, and the increase in chemical elements in the environment.” – Dr. Robert Becker, MD, two-time Nobel nominee, and author of The Body Electric: Electromagnetism and the Foundation of Life

Man-made EMFs emitted by cellphones, Wi-Fi internet, and radio are considered radiofrequency (RF) EMFs. 

People can experience a wide range of brain and mental health symptoms from these EMFs, including EEG changes, sleep disturbance/insomnia, depression, headache, tinnitus, brain fog, dizziness, listlessness, irritability, malaise, restlessness/anxiety, fatigue/tiredness, concentration/attention dysfunction, memory and thinking difficulties

This has been well documented in European countries. The prevalence of EMF sensitivity in Sweden, Switzerland and Austria have been reported to be 1.5%, 3.5% and 5% respectively (2, 3, 7). 

But I suspect the amount of people who are struggling with the negative effects of EMFs is actually higher because most people are simply not aware of the problem. 

As of March 22, 2017, 225 scientists from 42 countries have signed a letter that urges the United Nations, the World Health Organization, and governments around the world to develop stricter controls on devices that emit EMFs. Altogether, these scientists have published more than 2,000 peer-reviewed papers demonstrating the biological and health effects of radiofrequency EMFs.

As a result of the increasing amount of research demonstrating the risk of EMFs, the World Health Organization has now reclassified radiofrequency EMFs as a “class 2B carcinogen”, which places it in the same carcinogenic class as lead and the pesticide DDT (4).

Some European countries have also taken action in response. Switzerland has replaced the wireless internet in schools with wired internet. In Germany, the public health department is recommending their citizens switch off WiFi when they are not using it. And Italy, France, Austria, Luxembourg, Bulgaria, Poland, Hungary, Israel, Russia and China all have set limits on radiofrequency exposure that are 100 to 10,000 times lower than US standards (5, 6). 

Meanwhile, the United States rushes forward with the wireless revolution and the rollout of 5G

What about in Canada? Not much has been done here either, even though more than 50 Canadian doctors and researchers have demanded that Health Canada raise awareness about EMFs, update their EMF guidelines, and provide resources  to assist Canadian physicians in treating people with EMF sensitivity. 

Dr. Riina Bray, medical director of the Environmental Health Clinic at the Women’s College Hospital in Toronto, has even stood in front of Canadian Parliament to bring awareness to this issue. She says:

Individuals who are sensitive to EMF, or those with electromagnetic hypersensitivity, are canaries in a coal mine and lucky enough to have discovered what it is that is making them feel unwell. Many of them find everyday life and work difficult and uncomfortable. Most often we see them with family members who thought the patient had gone mad, but then realized that what they were saying was actually true, through observations.

The question that continues to alarm me is this. What of those who have not yet become sensitized, or those who are unwell but have not realized it is the EMFs provoking the problem and continue to try to function in an environment where the electrical and magnetic fields are high?

As a physician who has specialized in the area of environmental health for over 20 years, I am mortified at the lack of accountability regarding radio and microwave radiation use in the everyday lives of Canadians both young and old. There are no longitudinal studies except the one going on right now on people who did not ask to be subjects, who gave no research ethics board consent, and on whom data is not being collected. That is not a study at all.
— Dr. Riina Bray

I highly recommend you read the full transcript here. It is eye opening.

Dr. Jack Kruse, author of author of the book Epi-Paleo Rx, also talks about the risks of man-made EMFs extensively.

And these three books discuss the issue. I just started reading the first one: 

  • Zapped: Why Your Cell Phone Shouldn't Be Your Alarm Clock and 1,268 Ways to Outsmart the Hazards of Electronic Pollution by Dr. Ann Louise Gittleman, PhD

  • Earthing: The Most Important Health Discovery Ever by Dr. Stephen T. Sinatra, MD

  • Disconnect: The Truth About Cell Phone Radiation by Dr. Devra Davis, PhD

Lastly, I highly recommend watching this TV special if you're interested in hearing more experts talk about the effects of man-made EMFs:

My Experience

Two practitioners have confirmed that I’m particularly sensitive to EMFs. 

I live and work in the city, so I bought this EMF meter to figure out the amount of EMFs I was being exposed to in my environment. 

Pathway leading toward's the cottage property.

Pathway leading toward's the cottage property.

The result? Lots of radiofrequency EMFs where I spend most of my time, including my downtown apartment. 

However, my family has a cottage property about 1.5 hours away from the city. It’s just a cabin in the woods, in the middle of nowhere, away from civilization. 

So, I recently went there with my meter to measure the levels.

The result? Dead air. Zero radiofrequency EMFs. 

I thought my meter was broken because I’m so used to it displaying a yellow or red warning signal in the city. But at the cottage property, it was green. 

So, for 11 days, I lived at this property. I’ve been very quiet on social media because of this.

I had my phone off, the Wi-Fi was off the entire time, and I connected to the Internet only sparingly using an Ethernet cable. 

I even went to the electrical panel in the basement and cut the power supply on the circuit breaker sometimes, particularly right before I went to bed. 

What did I experience from this experiment?

  • Deeper, more restful sleep – I usually never dream or remember any dreams. But I had very vivid dreams and remembered them the next morning while in the woods. This rarely happens. The last time this happened, it was when I was doing neurofeedback. I’ve since learned that neurofeedback is protective against EMFs and helps people cope with EMFs [because EMFs alter electrical activity in the brain (18-23)].

  • Complete elimination of coffee

  • Reduction in the amount of supplements I had to take – In the city, I usually need to manage some lingering symptoms with supplements and other therapies. But these symptoms faded when I completely removed myself from EMFs.

  • More mental energy and endurance

  • Increased focus

A deer I saw on my trip away from the city.

A deer I saw on my trip away from the city.

Of course, there could be other factors at play and this could have been placebo, but I really don’t think so considering the huge difference in my sleep quality and the amount of dreams I could vividly recall the next morning.

Some people may be skeptical of all this, so let me lay out some of the research showing that EMFs can affect brain function and impact mental health.

Research in Russia shows that much of the impact from EMFs occurs in the brain and nervous system, and 26 studies have associated EMFs with 13 different neuropsychiatric effects (2). 

Below are 15 specific ways EMFs can affect your brain and mental health. 

Click here to subscribe

1. EMFs Damage Myelin

Myelin is a fatty, white substance that wraps around the end of many nerve cells. It forms an electrically insulating sheath that increases nerve condition speeds. 

Myelin sheath.

In other words, it allows your brain to send information faster and more efficiently, making it absolutely essential for the optimal functioning of your nervous system.

This research paper explains that there is an association between EMFs and the deterioration of myelin.

The researchers say there is "an association between RF-EMF exposure and either myelin deterioration or a direct impact on neuronal conduction, which may account for many electro-hypersensitivity symptoms” (9). 

I previously provided 25 proven ways to promote the regeneration of myelin.

 

2. EMFs Reduce Cognitive Function

While I was away from the city, my cognitive function improved. I found that it was easier to read quickly. 

In 2009, researchers looked at whether EMFs emitted by cellphones would affect cognitive function.

They found that the participants that were exposed to cellphone radiation demonstrated slower response times during a working memory task (8). 

 

3. EMFs Contribute to Bipolar Disorder

Smiley faces. EMFs may contribute to bipolar disorder.

I couldn’t find any scientific research demonstrating that EMFs cause or worsen bipolar disorder.

However, I did find an amazing case study from someone named Carmen in Virginia Beach.

She explains that limiting her exposure to EMFs significantly improved her symptoms of bipolar disorder:

I was diagnosed with bipolar disorder in 2003. 

I have always taken my medications and still even with great doctors and family support, I was not able to avoid the mental hospital in 2010. 

In 2014, I started to have some odd health issues that resembled symptoms of a stroke. 

It took many months but I was able to identify the root of my symptoms: fluorescent lights, cell towers, WIFI, my cell phone and other things too. 

Nobody listened because I have a pre-existing mental condition and attributed some of my symptoms to panic attacks and OCD.

I had to stop working in due to the severity of my symptoms and I had to do a lot of changes in my house, changed WIFI for a hardwire connection straight to the router from computer, changed our home cordless phone for old fashion corded one and all my family stopped using cell phones in the house. I also had to change light bulbs and some other things. 

I realized my cell phone on my night table had been keeping me up at night because all of a sudden, I had no trouble sleeping anymore.

Now I can focus on things, I am no longer confused or forgetful, and I am not hyperactive.

Most important of all, I have not had any periods of mania, depression or hypomania since I reduced my exposures to electromagnetic fields.

You can read her entire story here

It's important to note that she mentions that she also experienced symptoms from fluorescent lights and had to change the light bulbs in her home. 

This is likely because of the negative health effects of blue LED lighting, which I previously wrote about here

 

4. EMFs Alter Brain Proteins

Research shows that long-term exposure to EMFs significantly alters the expression of 143 proteins in the brain. 

What does this mean to us?

Researchers explain that these changes may affect brain plasticity, increase oxidative stress in the nervous system, and may explain conditions such as headaches, sleep disturbance, fatigue, memory deficits, and brain tumors (13). 

 

5. EMFs Increase Anxiety

Research clearly shows that radiation from wireless technology affects the autonomic nervous system and increases anxiety and stress.

EMFs increase anxiety.

In particular, it can lead to neurotic disturbances by upregulating the sympathetic nervous and downregulating the parasympathetic nervous system (15, 17). 

In other words, it can directly increase your “fight-or-flight” response, making you chronically stressed and anxious. 

And researchers are making it clear that it’s not just “in the person’s head”. One report explains that the response to “electrosmog is physiological and not psychosomatic”. In other words, it’s really affecting the person's body. 

Unfortunately, “those who experience prolonged and severe EMF hypersensitivity may end up developing psychological problems”, stress-related behaviours and anxiety disorders due to their inability to work, and the social stigma that their symptoms are imagined rather than real (15, 16). 

Click here to subscribe

6. EMFs Affect Neurotransmitters

EMFs also affect neurotransmitters, the chemicals that communicate information throughout your brain.

One study found that radiation from cellphones significantly disrupts levels of serotonin, dopamine and norepinephrine in the brain. 

The researchers concluded that this may be why people report that they experience stress, memory problems and learning difficulties from EMF exposure (14). 

 

7. EMFs Affect Thyroid Function

Your thyroid is a small butterfly-shaped gland located in your neck below your Adam’s apple.

An illustration showing the location of the thyroid gland.

As I discussed before, your thyroid gland plays a key role in the optimal health and functioning of your brain. It can impact your cognition, concentration, mood, memory and emotions.

Researchers have found that EMF exposure can affect the structure and functioning of the thyroid gland (10). 

One study found that heavy cellphone users have higher than normal TSH levels, and lower than normal T4 levels. These abnormal levels are linked to thyroid dysfunction and hypothyroidism (low thyroid) (11). 

Here are some of the brain and mental health symptoms of low thyroid that I’ve experienced:

  • Chronic fatigue

  • Brain fog

  • Low mood

  • Forgetfulness

  • Weakness

  • Sluggishness

Not surprisingly, these are also common symptoms of EMF hypersensitivity.

Check out this post for ways to support your thyroid.

My favourite way is by applying this red and infrared light to my thyroid. 

 

8. EMFs Increase Risk of Attention Deficit Hyperactivity Disorder (ADHD)

Attention deficit hyperactivity disorder (ADHD) is characterized by inattention and hyperactivity.

Yale researchers have determined that cellphone use during pregnancy affects the brain development of offspring, and this can lead to symptoms of ADHD in the children once they are born (12). 

This is the first experimental evidence that fetal exposure to radiofrequency radiation from cellular telephones does in fact affect adult behaviour. The rise in behavioral disorders in human children may be in part due to fetal cellular telephone irradiation exposure.
— Dr. Hugh Taylor, MD
 

9. EMFs May Worsen Symptoms of Autism

A report published in the journal Pathophysiology points out that autism involves many biological disturbances that are very similar to the physiological impacts of EMFs and radiofrequency radiation.

The researchers even say that reducing EMF exposure might reduce symptoms of autism.

With dramatic increases in reported autism that are coincident in time with the deployment of wireless technologies, we need an aggressive investigation of potential Autism/EMF/RFR links. The evidence is sufficient to warrant new public exposure standards benchmarked to low-intensity (non-thermal) exposure levels now known to be biologically disruptive, and strong, interim precautionary practices are advocated.
 

10. EMFs Reduce Melatonin and Disrupt Sleep

Melatonin is a hormone released by your pineal gland, a small gland in your brain. It helps control your sleep and wake cycles (circadian rhythm), and adequate levels of melatonin are necessary to fall asleep quickly and sleep deeply throughout the night.

Melatonin acts as a very potent antioxidant in your brain and can protect against a number of neurodegenerative and mental health conditions (26). 

Reduced levels of melatonin are associated with depression and suicide, seasonally affective disorder (SAD), schizophrenia, Alzheimer’s disease and Parkinson’s disease (24). 

Cellphone next to a woman sleeping. EMFs negatively affect sleep.

Unfortunately, 17 independent studies have found that EMFs disrupt the body’s circadian rhythm and natural production of melatonin, leading to sleep difficulties and many adverse health effects (25, 27-31). 

Researchers say that the evidence is “substantial and robust” and “there is a sound scientific basis for concluding that” acute and chronic EMF exposure lowers melatonin production, leading to very serious health effects, including depression (25, 32). 

That’s why you should turn off all Wi-Fi before bed. I live in a downtown apartment with lots of radiation coming from all the apartments around me, which likely explains why I slept so much better in the woods.

This sleep supplement contains magnesium and a number of other natural compounds that I’ve used over the years to promote the production of melatonin.

But I work with my clients so that they can naturally produce more melatonin and maximize the quality of their sleep without so many supplements. We have free online workshop that talks about how you can work with us. You can register for the workshop here.

Click here to subscribe

11. EMFs Increase Brain Tumors

The National Toxicology Program conducted a large, complex, two-year study on the potential health hazards of cellphone use. They found that RF and EMF exposure increases brain tumors in rats, mice, and humans (50-51). 

Sweden researchers have also published a meta-analysis showing a significant association between long-term cellphone use and both malignant and benign brain tumors (52). 

 

12. EMFs Disrupt the Blood-Brain Barrier

The blood-brain barrier is a protective shield that surrounds your brain. It acts as a gatekeeper and filter, allowing beneficial nutrients to cross over into your brain, and keeping unwanted molecules out of your brain.

A leaky brain. EMFs disrupt the blood-brain barrier.

In his book Why Isn’t My Brain Working, Dr. Datis Kharrazian explains that the blood-brain barrier can break down and become “leaky”. This allows harmful substances to enter your brain, contributing to brain inflammation, which has been shown to cause cognitive problems and mental illness.

A number of factors contribute to “leaky brain”, including electromagnetic fields. 

Radiofrequency EMFs emitted from cellphones have been shown to increase the permeability of the brain-blood barrier in several studies (33-34). 

And this increased permeability may lead to the accumulation of brain tissue damage and cognitive impairment (33, 35). 

I previously provided ways to support and repair the blood-brain barrier in this post

 

13. EMFs Increase Risk of Depression and Suicide

About 10 studies have reported an association between exposure to EMFs and depression (36, 37). 

A woman with depression. EMFs contribute to the rising rates of depression.

In a few of those studies, researchers found a specific correlation between living near a cellphone base station and severity of depressive symptoms (38-40). 

In another study, researchers looked at personnel at the U.S. embassy in Moscow who were exposed to EMFs, and they found that there was a statistically significant increase in depression (41). 

People working around radiofrequency EMFs are also more likely to suffer from depression and commit suicide (42-45). 

A good way to combat this is by supplementing with rhodiola. I previously wrote about how it’s a good antidepressant, but it’s been shown to be radioprotective as well (60-62). 

 

14. EMFs Increase Free Radicals and Oxidative Stress  

Free radicals are unstable molecules that damage cells and contribute to brain damage, aging and mental disease (46-47). 

Oxidative stress is when there is an altered balance between free radicals and their elimination by antioxidants.

After an extensive literature review, researchers have concluded that EMF exposure increases levels of free radicals and oxidative stress in the body, leading to acute and chronic health effects (49). 

In another study, researchers found that EMFs are an “oxidative stressor and DNA damage inducer” (48). 

Long-term EMF exposure has also been shown to lead to a chronically increased level of free radicals, reducing the effects of melatonin in the brain (49).

 

15. EMFs Linked to Dementia

Dementia is the third leading cause of death in the United States behind cardiovascular disease and cancer, and by 2050, it’s estimated that 13 million Americans and 160 million people globally will be affected by the disease.

Unfortunately, there are more than 70 studies linking EMFs to dementia, and this number is likely to rise as time goes on, along with the number of diagnoses (53). 

The research also includes several epidemiological studies and meta-analyses that link exposure to EMFs and Alzheimer’s onset (55). 

An elderly man sitting and thinking. EMFs contribute to dementia and cognitive decline.

Researchers have found that overnight exposure to EMFs significantly increases the secretion of amyloid-beta, a peptide that is involved in the development of Alzheimer's disease (54). 

EMF exposure also negatively affects the “entorhinal cortex”, the area of the brain that is first affected by Alzheimer's disease (56-57). 

Lastly, animal studies show that EMFs decrease learning and memory and cause cognitive deficits (58-59). 

I previously wrote a post with some ways to reverse cognitive decline and dementia. You can check that out here

 

Conclusion

If we continue to develop our technology without wisdom or prudence, our servant may prove to be our executioner.
— Omar N. Bradley
What EMFs would look like if you could see them.

What EMFs would look like if you could see them.

My vacation in the woods is now over, and I’m currently back in the city. 

I’m certain I’m sensitive to EMFs now, and it’s definitely impacting the quality of my life.

I really hope I don’t scare people with this post. But I do think it’s something that should be on your radar. 

At this point, I still don’t have too many recommendations to combat EMFs, other than the ones I already mentioned in my previous post about myelin (see step #25 in that post). 

But I plan on researching more and putting together a complete protocol that I’ve personally tested myself, so that you can also protect and shield yourself from EMFs!

So, stay tuned for that in an upcoming article. 

 
Click here to subscribe

Live Optimally,

Jordan Fallis

Connect with me

References:

(1) https://www.dovepress.com/the-western-diet-and-lifestyle-and-diseases-of-civilization-peer-reviewed-article-RRCC

(2) http://www.sciencedirect.com/science/article/pii/S0891061815000599

(3) http://www.sciencedirect.com/science/article/pii/S0928468012000442

(4) http://www.magdahavas.com/whos-new-classification-of-rfr-what-does-this-mean-for-canada/

(5) http://www.magdahavas.com/free-internet-access-in-swiss-schools-no-wifi/

(6) http://www.parentsforsafetechnology.org/worldwide-countries-taking-action.html

(7) https://openparliament.ca/committees/health/41-2/58/dr-riina-bray-1/only/

(8) https://www.ncbi.nlm.nih.gov/pubmed/19194860

(9) https://www.ncbi.nlm.nih.gov/m/pubmed/25205214/

(10) http://jeb.biologists.org/content/209/17/3322.long

(11) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243874/

(12) https://www.sciencedaily.com/releases/2012/03/120315110138.htm

(13) http://www.tandfonline.com/doi/abs/10.3109/15368378.2011.631068

(14) https://www.ncbi.nlm.nih.gov/pubmed/23852905

(15) https://www.ncbi.nlm.nih.gov/pubmed/24192494

(16) http://www.ncbi.nlm.nih.gov/pubmed/25359903

(17) https://www.ncbi.nlm.nih.gov/m/pubmed/9501332/

(18) https://www.rfsafe.com/study-shows-30-mins-exposure-4g-lte-cell-phone-radiation-alters-brain-activity/

(19) http://www.ewg.org/cell-phone-radiation-affects-brain-function

(20) https://www.ncbi.nlm.nih.gov/pubmed/12881192

(21) https://www.ncbi.nlm.nih.gov/pubmed/20001702

(22) https://www.ncbi.nlm.nih.gov/pubmed/14995060

(23) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459698/

(24) http://www.neilcherry.nz/documents/90_b1_EMR_Reduces_Melatonin_in_Animals_and_People.pdf

(25) http://www.neilcherry.nz/documents/90_b1_EMR_Reduces_Melatonin_in_Animals_and_People.pdf

(26) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1262766/

(27) https://www.ncbi.nlm.nih.gov/pubmed/23051584

(28) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1519707/

(29) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207748/

(30) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207748/

(31) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062017/

(32) http://www.saludgeoambiental.org/sites/saludgeoambiental.org/files/docs/cem_baja_frec_y_depresion_canada.pdf

(33) https://www.ncbi.nlm.nih.gov/pubmed/12076339

(34) https://www.ncbi.nlm.nih.gov/pubmed/19345073

(35) https://www.ncbi.nlm.nih.gov/pubmed/25598203

(36) http://www.saludgeoambiental.org/sites/saludgeoambiental.org/files/docs/cem_baja_frec_y_depresion_canada.pdf

(37) http://www.sciencedirect.com/science/article/pii/S0891061815000599

(38) https://www.ncbi.nlm.nih.gov/pubmed/15620045

(39) https://www.ncbi.nlm.nih.gov/pubmed/22219055

(40) https://www.emf-portal.org/en/article/18762

(41) https://www.ncbi.nlm.nih.gov/pubmed/9814721

(42) https://www.cdc.gov/niosh/niosht

(43) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1071010/

(44) https://www.ncbi.nlm.nih.gov/pubmed/7275611

(45) http://www.tandfonline.com/doi/abs/10.1080/13102818.1994.10818812

(46) https://www.ncbi.nlm.nih.gov/pubmed/2701375

(47) https://www.ncbi.nlm.nih.gov/pubmed/15182885

(48) https://www.ncbi.nlm.nih.gov/pubmed/22535669

(49) https://www.ncbi.nlm.nih.gov/pubmed/15352165

(50) https://ntp.niehs.nih.gov/results/areas/cellphones/index.html

(51) https://blogs.scientificamerican.com/guest-blog/do-cell-phones-cause-cancer-probably-but-it-s-complicated/

(52) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2569116/

(53) http://www.emfresearch.com/emfs-dementia/

(54) http://www.sciencedirect.com/science/article/pii/S0304394007002480

(55) https://www.hindawi.com/journals/ijcb/2012/683897/

(56) https://www.ncbi.nlm.nih.gov/pubmed/25462671

(57) https://www.nature.com/neuro/journal/v17/n2/full/nn.3606.html

(58) https://www.ncbi.nlm.nih.gov/pubmed/25359903

(59) https://www.ncbi.nlm.nih.gov/pubmed/25542888

(60) https://www.ncbi.nlm.nih.gov/pubmed/16822199

(61) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3148626/

(62) https://www.ncbi.nlm.nih.gov/pubmed/16013456

Terms and Conditions

Privacy Policy

Affiliate Disclosure

Disclaimer