29 Effective Ways to Reduce Excess Glutamate in the Brain

Your brain isn't just a bunch of grey matter.

It’s an intricate network of billions of neurons, communicating through neurotransmitters. 

One of these key neurotransmitters is glutamate.

Glutamate is an unsung hero, playing a vital role in your brain function and mental health.

However, as with many things in life, balance is key. 

Glutamate is necessary for optimal brain function, but an excess can cause problems and impact your brain health. 

That’s why understanding and managing glutamate levels in your brain is very important. 

In this article, we’ll explore the fascinating world of glutamate. 

I’ll delve into its function, and explain the causes and implications of excess glutamate.

But most importantly, I’ll share 29 practical strategies to reduce excess glutamate in the brain. 

This is essential reading for anyone who wants to maintain balanced glutamate levels and optimize their brain function and mental health. 

Are you ready to unravel the mysteries of glutamate?

Let's get started.

ways-to-reduce-excess-glutamate-in-the-brain-reducing-lower-reduction-techniques-natural-supplements-reducers-detox-control-levels-overload-balance-imbalance-guide-how-to-tips-neurological-health-mental-foods-lifestyle-changes-neurotransmitters-neuro

Understanding Glutamate: What Is It? What Does It Do in the Brain?

Imagine the brain as a bustling city.

It’s full of activity and flashing lights.

Signals are being sent back and forth. 

Central to all of this activity is glutamate.

Glutamate is one of the most abundant neurotransmitters in your nervous system. 

Glutamate enables communication between neurons, supporting crucial functions such as learning, memory, and cognitive processes.

It essentially acts like a postman in the brain, delivering messages between neurons.

When a neuron releases glutamate, it binds to specific receptors on a nearby neuron. 

This triggers an electrical signal that moves through the neuron.

This then stimulates various responses that allow your brain to function normally. 

So glutamate carries messages from neuron to neuron.

But, for all its importance, glutamate is also a bit of a Jekyll and Hyde character. 

It's a necessity for normal brain function, but glutamate levels can get too high.

And this can have harmful consequences. 

This is due to glutamate's excitatory nature.

Glutamate stimulates neurons to fire. In excess, this can lead to the overexcitation of neurons, a state known as excitotoxicity. 

This excitotoxicity can cause neuronal damage or death, which can then lead to various neurological conditions such as Alzheimer's disease, stroke, and epilepsy.

Moreover, glutamate excess isn't a rare occurrence. It can be triggered by factors like stress, low magnesium levels, poor diet, alcohol and drug use, and even genetic predisposition.

Therefore, while glutamate is vital for our brains, it's a substance we need to handle with care. 

Like city traffic, the right amount keeps things flowing smoothly. But too much can lead to chaos. 

Understanding how to control glutamate levels in your brain is a vital step towards ensuring your brain runs smoothly and healthily. 

In the upcoming sections, I'll explore the benefits of reducing glutamate, the signs and symptoms of excess glutamate, and then discuss practical strategies to keep it under control.

 

The Benefits of Reducing Excess Glutamate in the Brain

Maintaining a healthy balance of glutamate is crucial.

Reducing excess glutamate can have numerous benefits for brain health and overall wellbeing.

Here are some of the health benefits of reducing excess glutamate in the brain:

Neuroprotection: High levels of glutamate can cause excitotoxicity, a state of hyperactivity that can damage or even kill neurons. By keeping glutamate levels in check, you protect your neurons from damage, preserving the health and integrity of your brain tissue (70). 

Reduced Risk of Neurological Disorders: Several neurological disorders, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis, have been linked to excessive glutamate activity. By regulating glutamate levels, you can reduce the risk or slow the progression of these disorders (71-73). 

Improved Mental Health: Excess glutamate activity has also been implicated in several mental health disorders, including anxiety, depression, and schizophrenia. Balancing glutamate levels can help manage symptoms and promote better mental health (74-76). 

Cognitive Enhancement: Glutamate is essential for synaptic plasticity, the process by which connections between neurons are strengthened or weakened, which is crucial for learning and memory. However, too much glutamate can interfere with this process. By reducing excess glutamate, you can enhance your cognitive function (77). 

Prevention of Migraines and Seizures: Excessive glutamate release can lead to hyperexcitability of neurons, which can trigger migraines and seizures. Maintaining a healthy balance of glutamate can help prevent these issues (78-79). 

Reduced Inflammation: Glutamate is involved in inflammatory processes within the brain. High levels of glutamate can contribute to neuroinflammation, which is linked to many brain disorders. Reducing excess glutamate can help control inflammation, further protecting brain health (80-81).

 

Signs, Symptoms and Health Conditions Associated with Excess Glutamate in the Brain

While we’ve established that glutamate is a key player in the brain, like an overenthusiastic musician, it can throw the entire orchestra out of tune when it plays too loudly.

But how do we know when glutamate is in overdrive? 

Here, I’ll discuss the signs, symptoms and health conditions that indicate that you could have excess glutamate levels in your brain.

Remember, excess glutamate causes excitotoxicity – an overexcitation of neuronal activity. 

This overexcitation can manifest in various ways, but some common symptoms and conditions include:

Alzheimer's Disease: Research points to glutamate excitotoxicity as a key player in the onset and progression of Alzheimer's disease. This overstimulation of neurons by glutamate was found to contribute to the neural damage observed in this debilitating condition (72). 

Amyotrophic Lateral Sclerosis (ALS): Also known as Lou Gehrig's disease, this is a neurodegenerative disorder affecting motor neurons. Excitotoxicity is thought to be one of the factors leading to motor neuron death in ALS (82). 

Traumatic Brain Injury (TBI): After a TBI, there can be a surge of glutamate that leads to excitotoxicity and further brain damage (83). 

Other Neurodegenerative Diseases: These include Parkinson's disease and Huntington's disease. In these conditions, excitotoxicity caused by excess glutamate can contribute to the progressive loss of neurons (71). 

Stroke: During a stroke, the lack of oxygen and glucose can lead to a massive release of glutamate, causing excitotoxicity and contributing to the damage seen in stroke (84). 

Migraines: Studies highlight the role of elevated glutamate levels in triggering migraines. Excess glutamate was found to stimulate pain pathways in the brain, leading to the onset of migraines (78-79). 

Epilepsy: Glutamate is involved in the initiation and spreading of seizure activity. Overexcitation of neurons can trigger seizures, and antiepileptic drugs often work by decreasing glutamate levels or blocking its effects (78-79). 

Multiple Sclerosis: Some studies have suggested that glutamate excitotoxicity might be involved in the damage to neurons seen in multiple sclerosis (73). 

Autism: Some research indicates that people with autism might have higher levels of glutamate, which could play a role in the symptoms of this condition (85). 

Anxiety and Restlessness: Excess glutamate can lead to feelings of unease and nervousness, as the brain becomes overstimulated (86). 

Insomnia: With glutamate firing up neurons, it can make it challenging for the brain to wind down for sleep (87). 

Cognitive Impairment: Over time, chronic excess glutamate can lead to cognitive issues, such as memory loss or difficulty concentrating (88). 

Low Mood and Depression: An imbalance in glutamate has been linked to mood disorders, including depression and bipolar disorder. Certain treatments for depression, such as ketamine, work by blocking glutamate activity (89). 

Hyperactivity and ADHD: High glutamate levels are often observed in individuals with ADHD, contributing to their hyperactivity and difficulty focusing (90). 

Schizophrenia: Studies suggest that schizophrenia might be related to hyperactivity of the glutamatergic system (91). 

While research clearly illustrates that excess glutamate can cause harm, it's important to remember that glutamate isn't inherently 'bad'. In fact, it's crucial for our brain function. 

The key lies in maintaining a balanced level of this vital neurotransmitter. In fact, balance is a central theme in brain health, and glutamate is no exception. 

When in balance, glutamate facilitates learning, memory, and cognition, orchestrating a well-functioning neural network. 

But when levels tip towards excess, it can lead to overstimulation of neurons, resulting in a range of symptoms and conditions that I discussed above.

Maintaining balanced glutamate levels is, therefore, of paramount importance for our brain health and overall wellbeing. 

Just as a tightrope walker maintains a delicate balance to cross safely, so too must we balance our glutamate levels to ensure optimal brain function.

In the next sections, I'll delve into the science-backed steps you can take to reduce excess glutamate and keep it in balance.

 

The Best Lifestyle Habits, Therapies and Practices Proven to to Reduce Excess Glutamate in the Brain

1. Exercise 

Physical activity has been shown to have profound effects on the brain, influencing cognition and mood.

This includes the regulation of neurotransmitters, including glutamate.

Research shows that exercise enhances overall brain metabolism, which involves the efficient processing and clearance of excess glutamate (4). 

Exercise can also stimulate the conversion of glutamate into glutamine by activating an enzyme called glutamine synthetase (5). 

This enzyme produces more glutamine, which is less excitatory than glutamate, and it can safely be stored in the brain or transported out of it.

Exercise can also enhance the expression of glutamate transporters, which are proteins responsible for moving glutamate away from the extracellular space where it can cause harm. As a result, exercise can help prevent the excessive accumulation of glutamate (6). 

Exercise is recommended by many experts and it’s often their number one piece of advice for optimal brain health.

My usual advice is to find a sport or exercise routine that you enjoy, so that you’ll stick with it consistently.

Exercise also increases endorphins, nerve-growth factor, orexin, HRV, GABA, GDNF, and reduces inflammation in the brain.

 

2. Reduce Stress

High stress levels can influence glutamate production and increase glutamate levels in the brain.

Chronic or acute stress triggers a cascade of physiological responses, including the activation of the hypothalamic-pituitary-adrenal (HPA) axis.

Stress also increases the release of cortisol, a hormone that is released during stressful events.

These changes can then lead to an increase in glutamate levels.

Research shows that high levels of cortisol can increase glutamate release in certain regions of the brain (7). 

Stress reduction can also promote the production of GABA, a neurotransmitter that counteracts the excitatory effects of glutamate.

Therefore, it's important to develop effective stress-management techniques. 

The techniques to manage stress can vary widely. But many have been shown to have a positive impact on glutamate levels.

Some examples include meditation, yoga, tai chi, deep breathing, biofeedback, counseling and therapy, or even just pursuing a hobby that brings you joy and relaxation.

Remember, it's important to choose stress management techniques that suit your lifestyle and preferences, and regular practice is key.

 

3. Acupuncture

Acupuncture is an integral part of Traditional Chinese Medicine.

It has been practiced for hundreds of years for a variety of ailments. 

Acupuncture involves the insertion of thin needles into specific points on the body, known as acupoints, to manipulate the flow of energy and restore balance within the body.

Some studies suggest that acupuncture can help to balance glutamate levels in the brain.

Acupuncture can also stimulate the production of GABA, the brain's primary inhibitory neurotransmitter that counteracts the excitatory effects of glutamate (8). 

Acupuncture is also known for its anti-inflammatory properties. Inflammation can stimulate glutamate release and impede its clearance, so acupuncture's ability to reduce neuroinflammation can help regulate glutamate levels (9). 

I’m personally a big fan of auricular acupuncture. Auricular acupuncture is when needles are inserted into the ear. 

I’d recommend trying to find a health practitioner in your area who provides it, especially if you’re weaning off psychiatric medication. It really helped me the first time I came off antidepressants. I was surprised. At the end of each appointment, my practitioner would secure small black seeds on my ear.

In my experience, ear acupuncture is more effective than regular acupuncture.

I also often lie on an acupuncture mat at home to relax before bed.

Click here to subscribe

4. Meditation

Meditation is a mind-body practice that promotes focused attention, mindfulness, and a sense of inner peace.

It has gained significant attention for its potential to enhance mental wellbeing and resilience. 

Meditation is personally one of my favorite daily activities to maintain optimal brain function and mental health.

It can influence various physiological and psychological processes, including the regulation of neurotransmitters like glutamate.

Research shows that meditation can stimulate the production of GABA,, an inhibitory neurotransmitter that counteracts the excitatory effects of glutamate (10). 

Meditation can also influence brain metabolism, leading to improved energy utilization and clearance of waste products, including excess glutamate (12). 

Meditation comes in many forms, including mindfulness meditation, loving-kindness meditation, guided imagery, and body scan practices. 

Experiment with different forms to find one that resonates with you.

You should aim for at least 10-20 minutes of meditation per day.

If you're new to meditation, start with just a few minutes each day and then gradually increase the time as you become more comfortable with the practice.

Remember, the benefits of meditation are usually seen with regular and consistent practice. 

Make it a part of your daily routine, whether it's first thing in the morning, during your lunch break, or before bedtime.

If you're new to meditation, you might want to start with guided practices, or even seek the assistance of a meditation teacher. 

There are also many apps available that offer guided meditations. These can be particularly helpful for beginners.

I personally use and recommend the Muse headband to meditate. It gives you real-time feedback while you meditate. It makes meditation a lot more fun and tolerable. 

I previously wrote about it here, and you can get it through the Muse website.

Remember, just like any other skill, meditation takes practice and patience. Don't be discouraged if you don't see immediate changes. Over time, with consistent practice, you're likely to notice further improvements.

Always remember that the goal is not perfection but rather developing a greater sense of awareness and peace.

 

5. Yoga

Yoga is an ancient practice originating from India.

It involves a combination of physical postures, breath control, and meditation. 

Yoga is increasingly recognized for its numerous physical and mental health benefits.

Its benefits extend to the regulation of brain chemistry, including neurotransmitters such as glutamate.

Yoga can stimulate the production of GABA, an inhibitory neurotransmitter that counteracts the excitatory effects of glutamate (11). 

Keep in mind that yoga practice should be adapted to individual abilities and needs.

It is often beneficial to seek instruction from a certified yoga teacher, especially for beginners.

So, consider joining a local yoga class or find online yoga classes that suit your level. The guidance of a professional can help you ensure proper form and avoid injury.

Consistency is also key. Even if it's just 15-20 minutes, regular practice can result in significant benefits.

Try different types of yoga to keep things interesting and to benefit from different postures and practices. This could include Hatha, Vinyasa, Yin, or Restorative yoga.

Despite all the great research behind yoga, I’m personally not a big fan of it. A lot of people swear by it but it’s just not for me. I prefer meditation and neurofeedback, which I’ll talk about now. 

 

6. Neurofeedback

Neurofeedback, also known as EEG Biofeedback, is a type of biofeedback therapy that provides real-time displays of brain activity with the goal of self-regulation. 

It involves observing one's own brain waves via an electroencephalogram (EEG) and learning how to control or modify them through feedback. 

Neurofeedback has shown promise in the treatment of various neurological and psychiatric conditions.

Recent research suggests it also plays a role in regulating neurotransmitters such as glutamate (13). 

Studies have shown that neurofeedback training can balance the excitatory (glutamate) and inhibitory (GABA) neurotransmitter systems (14). 

Personally, neurofeedback was one of the most impactful actions I took to overcome severe anxiety. 

It works at a deep subconscious level, breaking the cycle of chronic anxiety.  

It shifts you into a natural, healthier state of mind.  

If you want to try neurofeedback, it’s best to work with a qualified neurofeedback practitioner to ensure the correct protocols are used. They’ll also interpret and respond to the feedback effectively.

If you’re interested in neurofeedback, I recommend becoming a client and working with us to determine the best type of neurofeedback for you and your condition. I have found that some types of neurofeedback are completely ineffective and may even be harmful. So it’s very important to do the right type of neurofeedback that actually works. 

I also sometimes recommend the Muse headband. It’s a decent substitute to real neurofeedback and gives you real-time feedback on your brain waves while you meditate. 

I previously wrote about the Muse headband here, and you can get it through the Muse website. But keep in mind that it’s definitely not as effective as clinical neurofeedback.

 

7. Deep Sleep

Sleep serves multiple critical roles in the body, from the consolidation of memory to the maintenance of mental health. 

Research clearly shows that sleep plays a vital role in brain chemistry regulation, particularly concerning glutamate.

During the deep stages of sleep, the brain's glymphatic system (a waste clearance system) becomes more active. This system facilitates the removal of excess glutamate and other waste products from the brain, helping to maintain optimal glutamate balance (15). 

Sleep also provides neurons a break from the constant excitatory activity that occurs during wakefulness, reducing the demand for glutamate. This pause allows for the maintenance of glutamate balance and prevents the overstimulation that could lead to excess glutamate.

Non-REM sleep also promotes the production of GABA, an inhibitory neurotransmitter that counteracts the excitatory effects of glutamate (16). 

Given the connection between sleep and glutamate regulation, prioritizing good sleep hygiene is crucial. 

This involves maintaining a regular sleep schedule, creating a quiet and comfortable sleep environment, and addressing any underlying sleep issues.

Good sleep isn't a luxury. It's a necessity for optimal brain function and mental health.

I personally used to have very poor sleep and it was one of the main factors that contributed to my poor brain function and mental health.

If you’re having trouble with sleep, try this sleep supplement. It contains natural compounds that I’ve used over the years to get deeper and more restful sleep. 

I also work with my clients so that they can naturally produce more melatonin and maximize the quality of their sleep without so many supplements. We have a free online workshop that talks about how you can work with us. You can register for the workshop here.

 

8. Avoid Neurotoxins

Neurotoxins are substances that can interfere with the structure or function of nervous tissue, including the neurons in our brain. 

They can be found in a variety of environmental sources, including certain foods, heavy metals, pesticides, certain types of molds, and even in some household cleaning products. 

Exposure to these neurotoxins can stimulate glutamate activity. Their detrimental impact on the brain can exacerbate the levels of glutamate and the effects of glutamate. They can inhibit the reuptake of glutamate, leading to its accumulation (17). 

Many neurotoxins also increase the excitatory stimulation of neurons, often by mimicking the actions of glutamate. This can lead to an overstimulated, or 'excited', state in the brain that can result in neurotoxicity (18). 

By avoiding neurotoxins, you can help prevent overstimulation and glutamate-induced excitotoxicity.

Many neurotoxins can also trigger inflammation in the brain, which can stimulate the release of glutamate and hinder its clearance (19).

However, reducing your exposure to neurotoxins can reduce chronic inflammation and help regulate glutamate levels.

Avoiding neurotoxins involves lifestyle changes such as: 

  • Choosing organic produce

  • Using natural cleaning products

  • Ensuring good ventilation in your living and working spaces

  • Ensuring safe drinking water

  • Having regular checks for mold or heavy metal exposure

Although complete avoidance may not always be possible due to ubiquitous environmental pollutants, reducing exposure and supporting the body's detoxification pathways can significantly help.

 

9. Stay Hydrated

Water is essential for all bodily functions.

This includes the efficient removal of toxins and waste products that can interfere with the regulation of neurotransmitters, including glutamate.

Water is essential for the proper functioning of the brain's transport systems, which remove excess glutamate and other waste products. 

Without sufficient hydration, these transport systems work less efficiently, leading to an accumulation of glutamate (20). 

So don't wait until you're thirsty to drink water. Make it a habit to sip on water throughout the day.

To stay adequately hydrated, it's generally recommended to consume at least eight 8-ounce glasses of water a day. But this can vary based on individual needs, climate, and activity level. 

Pay attention to signs of dehydration, which can include dry mouth, fatigue, and darker urine.

Athletes or people who exercise regularly may need more fluids to replace the water lost through perspiration.

Furthermore, hydration doesn’t only come from water, but also from consuming a diet rich in fruits and vegetables, which have high water content.

Proper hydration is definitely an easily overlooked but important factor in the optimization of brain function. 

Just make sure you’re drinking the purest water possible. I use a water filter to make sure I’m drinking the purest water available. It filters everything out of the water.

Click here to subscribe

10. Detoxification

Detoxification is the body's natural process of neutralizing or eliminating toxins.

The body accomplishes this primarily through the liver, kidneys, and to some extent, the gastrointestinal tract, skin, and lungs. 

This is an essential aspect of maintaining optimal health.

Toxins can originate from both internal sources (like metabolic byproducts) and external sources (such as pollutants, chemicals, and heavy metals).

Some toxins have neurotoxic properties, which means they can damage neurons or disrupt neuronal function. 

These neurotoxins can contribute to excess glutamate by increasing glutamate release or blocking its reuptake (21). 

By promoting detoxification, you help your body eliminate these toxins and reduce the neurotoxic burden (22). 

As a result, you’re more likely to maintain balanced glutamate levels.

Some toxins can also trigger an inflammatory response, which can increase glutamate levels (23). 

Effective detoxification can help modulate this immune response, helping your body maintain glutamate balance (24). 

If you want to increase detoxification, you can try dry brushing, infrared sauna sessions, or eating lots of antioxidant-rich fruits and vegetables.

Other detoxification strategies include regular exercise, hydration, dietary changes, and the use of specific supplements or therapies that support the liver and other detoxifying organs.

Optimal Antiox can also help with brain detoxification.

 

11. Limit Exposure to Loud Noises

The impact of noise on health is a burgeoning field of study.

Interestingly, prolonged exposure to loud noise has been associated with increased levels of glutamate. 

Research shows that loud noise can release too much glutamate, overwhelming the glutamate receptors. This can then lead to loss of synapses and, eventually, a condition called sensorineural hearing loss (25). 

Chronic noise exposure can also act as a stressor, triggering the release of stress hormones that can increase glutamate levels (26). 

So it’s best to try to limit your exposure to loud noise as much as possible.

Practical strategies for reducing exposure to loud noises include:

  • Using earplugs or noise-canceling headphones in noisy environments

  • Limiting the use of loud machinery or equipment

  • Creating a quiet, peaceful environment at home and at work

Regular hearing checks can also help monitor any potential noise-induced hearing damage.

 

12. Cold Exposure

Cold exposure, or cold thermogenesis, is the process of subjecting your body to cold temperatures to stimulate physiological responses. 

Benefits can range from improved immune function and metabolism to enhanced mood and cognitive function. 

Cold exposure could also influence glutamate regulation. 

In one study, researchers found that glutamate transmission is decreased in the brain during cold exposure (3). 

Cold exposure also promotes the production of GABA, an inhibitory neurotransmitter that counterbalances glutamate's excitatory effects (27). 

Cold exposure can be practiced in various ways, such as taking cold showers, swimming in cold water, or spending time in colder outdoor environments. 

However, it's crucial to approach cold exposure carefully. Extreme cold can be dangerous for some individuals, particularly those with certain health conditions.

Make sure you do this practice safely and within your comfort limits.

I personally take a cold shower every day.

During the winter, I’ll also go outside for short periods of time with hardly any clothes. It boosts my dopamine and increases my motivation.

You don’t have to be that extreme though.

You can start by finishing your next shower with one minute of cold water.

See how it feels, and then over time, increase the amount of time. 

It can be a bit painful.

But the beneficial effects end up being worth it.

Another way is to stick your face, hand or foot in ice cold water.

Or you can try cold plunges, cold baths and even cryotherapy if you want.

Find what works best for you and do it regularly.

Overall, cold exposure is a chilly, but rewarding, journey to enhanced brain function and mental health.

 

The Best Nutrients, Foods and Dietary Changes Proven to to Reduce Excess Glutamate in the Brain

13. Omega-3 Fatty Acids

Omega-3 fatty acids are essential fats that are well-recognized for their wide-ranging health benefits, including cognitive function.

Omega-3 fatty acids include EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid).

These fats are very important for overall brain health.

Many studies show that they significantly reduce brain inflammation; improve memory, mood and cognition; and protect against mild cognitive impairment, dementia and Alzheimer's disease.

They can also help protect against glutamate toxicity.

Glutamate's excitatory action is mediated through calcium channels. Excessive glutamate can over-activate these channels, leading to a harmful influx of calcium into neurons. 

But research suggests that omega-3 fatty acids can help modulate these calcium channels, thereby regulating glutamate-induced excitatory activity (28-29). 

Omega-3 fatty acids can also enhance the function of glutamate transporters, proteins that remove glutamate from the synaptic cleft. This helps prevent excessive glutamate accumulation (30). 

Lastly, chronic inflammation stimulates the excessive release of glutamate and hinders its reuptake, leading to its buildup. But Omega-3 fatty acids have potent anti-inflammatory properties, and by reducing inflammation, they can help maintain balanced glutamate levels (31). 

Omega-3 fatty acids are considered “essential fatty acids”, meaning your body cannot create them. You have to get them from food or supplements.

Food sources of omega-3 fatty acids include: 

  • Fatty fish like salmon, mackerel, and sardines

  • Flaxseeds

  • Chia seeds

  • Walnuts

  • Eggs

These foods are included in my Free Grocery Shopping Guide for Optimal Brain Health.

Supplements, like fish oil, are also commonly used to increase omega-3 intake.

 

14. Magnesium 

Magnesium is an essential mineral involved in more than 300 biochemical reactions in the body.

It plays a vital role in maintaining brain health and regulating neurotransmitter activity, including glutamate.

Glutamate primarily exerts its effects via the N-methyl-D-aspartate (NMDA) receptor. Excessive activation of NMDA receptors by glutamate can lead to neuronal damage, a phenomenon known as excitotoxicity. 

But magnesium acts as a natural blocker of NMDA receptors. When magnesium levels are optimal, it protects against excessive glutamate activity by sitting inside the NMDA receptor's channel and preventing calcium influx (32). 

Research indicates that magnesium also supports the function of glutamate transporters, which are proteins that clear glutamate from the synaptic cleft and prevent excessive accumulation (33-36). 

Magnesium also contributes to the maintenance of the resting membrane potential, which is the electrical charge that exists across the neuronal membrane. This helps to stabilize neurons and protect them from the excitatory effects of glutamate (37-38). 

Lastly, magnesium is involved in the enzymatic conversion of glutamate to GABA, an inhibitory neurotransmitter that counterbalances glutamate's excitatory effects (39). 

There are a number of things you can do to make sure you’re getting enough magnesium, so that you maintain adequate magnesium levels and reduce excessive glutamate.

First, make sure you’re eating magnesium-rich foods on a regular basis, including:

  • Spinach

  • Chard

  • Pumpkin seeds

  • Almonds

  • Avocado

  • Dark chocolate

  • Bananas

These foods are included in my Free Grocery Shopping Guide for Optimal Mental Health.

You can also increase your body’s intake of magnesium by taking Epsom salt baths.

Supplementation is often a good idea for most people because many people are deficient.

Magnesium is included in this supplement.

 

15. Vitamin B6

Vitamin B6, also known as pyridoxine, is a crucial nutrient involved in various biochemical reactions in the body.

It plays a role in protein metabolism, red blood cell formation, and neurotransmitter synthesis.

Vitamin B6 serves as a necessary cofactor for glutamate decarboxylase, which is an enzyme that converts glutamate into GABA. 

GABA is an inhibitory neurotransmitter that counterbalances the excitatory action of glutamate.

As a result, sufficient vitamin B6 can help maintain a balanced excitatory-inhibitory state in the brain (40-41).

Food sources of Vitamin B6 include: 

  • Salmon

  • Chicken

  • Bananas

  • Potatoes

These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

But if you want to see quick improvements, you may want to try supplementing with Vitamin B6.

When I took antidepressants and benzodiazepines for my chronic anxiety, I took a Vitamin B6 supplement.

This is because psychiatric medication can further deplete Vitamin B6, increasing anxiety in the long run.

So if you take medication to manage your anxiety, or you simply have anxiety and want to manage it better, I highly recommend supplementing with Vitamin B6.

That’s why I included it in the Optimal Calm supplement.

Click here to subscribe

16. Vitamin C

Vitamin C, also known as ascorbic acid, is a potent antioxidant known for its immune-supportive properties. 

But its roles extend beyond the immune system.

It also impacts brain health and neurotransmitter regulation, including glutamate.

Some research indicates that vitamin C can inhibit the release of glutamate from neurons. As a result, it can prevent excessive glutamate accumulation in the brain (42-44). 

Vitamin C has also been found to promote the uptake of glutamate by neurons, which helps maintain balanced glutamate levels (42-44).

As you probably know, vitamin C is found in fruits and vegetables such as:

  • Citrus fruits

  • Strawberries

  • Bell peppers

  • Broccoli

  • Kiwi

These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

In addition to getting vitamin C from fruits and vegetables, I take at least 500 mg of supplemental vitamin C every day. It’s included in Optimal Antiox. 

I’ve taken up to 10 grams of vitamin C daily, and it definitely improves mood and reduces stress and anxiety.

 

17. Vitamin E

Vitamin E is a group of fat-soluble compounds known for their potent antioxidant properties. 

It plays a vital role in various physiological processes, including those related to brain health and neurotransmission.

Vitamin E can inhibit the activation of an enzyme known as protein kinase C, which is involved in the release of glutamate (45). 

By doing so, Vitamin E can help control the amount of glutamate released into the brain and prevent excessive glutamate activity (46-47). 

Vitamin E has also been found to inhibit the binding of glutamate to its receptor, the NMDA receptor. By blocking this binding, Vitamin E can help regulate the excitatory effects of glutamate and reduce the risk of excitotoxicity (48-49). 

Sources of Vitamin E include nuts, seeds, spinach and broccoli.

These foods are included in my Free Grocery Shopping Guide for Optimal Brain and Mental Health.

For those who don’t get enough from their diet, Vitamin E supplements are available.

Vitamin E is included in the Optimal Antiox supplement.

 

18. Zinc

Zinc is an essential trace element that's vital for numerous biochemical processes in the body, including immune function, DNA synthesis, wound healing, and growth.

When it comes to brain function and mental health, zinc also plays a key role.

Zinc is known to modulate the function of N-methyl-D-aspartate (NMDA) receptors, which are primarily activated by glutamate. By binding to these receptors at a specific site, zinc can inhibit their activation and reduce the excitatory effects of glutamate (50). 

Zinc can also influence the release of glutamate from nerve cells. Some research suggests that zinc's presence can inhibit the release of glutamate, thus helping prevent an excessive buildup of this neurotransmitter (51). 

I created and take the Optimal Zinc supplement to make sure my zinc levels are optimal. I created it because I want to give my readers the very best zinc supplement so that they can experience superior results. I have found that many zinc supplements on the market fall short. Optimal Zinc includes several other nutrients and co-factors that increase the absorption of zinc.

Besides supplementing with zinc, you should also eat plenty of healthy, whole foods that contain zinc.

Some of the best foods to optimize your zinc levels include:

  • Oysters

  • Grass-fed beef

  • Pumpkin seeds

  • Cashews

  • Mushrooms

  • Spinach

These foods are included in my Free Grocery Shopping Guide for Optimal Mental Health.

 

19. Limit Glutamate-Boosting Additives

A significant part of managing glutamate levels involves taking a close look at your diet.

You especially need to keep an eye on food additives known to increase glutamate levels. 

Key among these are monosodium glutamate (MSG), hydrolyzed vegetable protein, autolyzed yeast, and certain soy products.

Monosodium glutamate (MSG) is a flavor enhancer often used in processed foods, and it contains glutamate. 

By limiting MSG, you can directly reduce your intake of glutamate from dietary sources.

Similar reductions can be achieved by cutting down on hydrolyzed vegetable protein, autolyzed yeast, and certain soy products, all of which contain or lead to the formation of glutamate.

A diet high in these additives can lead to spikes in glutamate levels.

So it’s a good idea to read food labels carefully and avoid these additives.

Some evidence suggests that the glutamate in these food additives is more readily absorbed in the gut compared to naturally occurring glutamate in protein-rich foods (52). 

Therefore, reducing these additives can help lower the amount of glutamate that's available for absorption into the bloodstream and the brain.

These additives are commonly found in processed and fast foods, which are generally lower in nutrients compared to whole foods. 

So, by cutting down on foods containing these additives, you will naturally increase your consumption of healthier nutrient-rich foods. This will improve your overall brain function and mental health as well.

 

20. Limit Artificial Sweeteners (Aspartame)

Artificial sweeteners, particularly aspartame, are widely used in sugar-free and "diet" products, including soft drinks, candy, and baked goods. 

However, they're not just a source of sweet taste. They can also influence your brain function and increase glutamate activity in the brain. 

Some studies suggest that aspartame can increase the release of glutamate in certain parts of the brain, and reducing aspartame intake could lower this risk (53). 

Artificial sweeteners are typically found in processed foods that often lack essential nutrients. So by reducing your intake of aspartame, you'll likely decrease your consumption of processed foods, and end up eating healthier, nutrient-dense foods that are better for your brain and mental health. 

 

21. Limit Alcohol

Alcohol is a neurotoxin. It wreaks havoc on your brain by raising cortisol levels, disrupting the blood-brain barrier, and increasing inflammation and oxidative stress.

It also influences glutamate levels in the brain. 

Alcohol consumption can initially suppress the glutamate system, leading to lower-than-normal levels of activity. 

But then when alcohol consumption is stopped, the brain responds with a surge of glutamate activity, far above normal levels, which can lead to hyperexcitability and withdrawal symptoms (54). 

There are ways to protect your brain from alcohol.

But you’re better off just avoiding it completely or significantly reducing your consumption if you’re trying to heal and recover from chronic health issues. 

I personally don’t drink alcohol at all anymore. It’s just not worth it. 

If you do decide to drink, this article discusses the types of alcohol that are better than others.

 

22. Limit Caffeine

Caffeine is a popular stimulant, known for its capacity to promote alertness and combat fatigue. 

However, it also influences various brain processes, including the regulation of glutamate.

Caffeine works by blocking adenosine receptors in the brain. Adenosine normally dampens neural activity, but when caffeine blocks it, it leads to increased neural firing. This then stimulates the release of neurotransmitters like glutamate, leading to the overstimulation of neurons (55). 

By limiting caffeine, you can maintain a more balanced neural activity and prevent surges in glutamate.

However, it’s important to point out that caffeine is definitely good for overall brain function. There is a lot of research showing it is very healthy and can be protective against dementia.

So you don’t need to eliminate all caffeine from your life. Just try to moderate your intake and reduce how much coffee, tea, and other caffeinated drinks you consume daily. 

And keep in mind that it can disrupt your sleep and make people anxious. I used to not be able to handle any coffee at all. But now that I'm healthy, I can handle it just fine. I drink one cup of high-quality coffee most mornings.

But if you’re struggling with chronic stress and trying to optimize your glutamate system, I would recommend you limit your caffeine intake and avoid high doses of caffeine.

I would also recommend having caffeine-free days and/or stopping caffeine consumption several hours before bedtime to prevent potential sleep disruptions, which can also negatively impact glutamate activity.

An alternative solution is to consume the whole coffee fruit, instead of drinking coffee.

Concentrated coffee fruit extract doesn’t contain caffeine, but it does contain several healthy compounds not found in coffee beans themselves.

Scientists have discovered that ingesting whole coffee fruit concentrate significantly increases brain function. 

Coffee fruit concentrate can be found in the Optimal Brain supplement.

Click here to subscribe

The Best Natural Supplements and Herbs Proven to to Reduce Excess Glutamate in the Brain

23. Probiotics

The human gut is more than just a digestive organ. 

It's also an intricate network of microbes, collectively known as the gut microbiome.

Your gut microbiome contains a variety of probiotics, which play crucial roles in your overall health.

In fact, there's a strong connection between your gut microbiome and brain function, often referred to as the gut-brain axis.

Ensuring a healthy gut microbiome through a balanced diet and probiotics can influence the regulation and balance of neurotransmitters, including glutamate.

Some strains of probiotics are even capable of producing neurotransmitters or their precursors. 

For instance, certain Lactobacillus and Bifidobacterium species can produce GABA, an inhibitory neurotransmitter that counterbalances glutamate (56). 

By enhancing GABA production, these probiotics can help maintain a healthy balance between excitatory and inhibitory signals in the brain.

In one study, researchers found that pure or mixed lactobacillus and bifidobacterium supplements can ameliorate glutamate excitotoxicity (1). 

Lactobacillus and Bifidobacterium are both included in the Optimal Biotics supplement. 

Another study showed that multistrain probiotic supplements can influence glutamine/glutamate metabolism (2). 

Chronic inflammation can also disrupt neurotransmitter regulation and lead to elevated glutamate levels. 

But some probiotics possess anti-inflammatory properties and can help reduce inflammation and improve glutamate regulation (57). 

Probiotics are most commonly found in fermented foods like yogurt, kefir, and sauerkraut

But they can also be consumed through supplements, such as Optimal Biotics.

Check out this article for several other ways to increase good bacteria in your gut.  

And if you struggle with anxiety or depression, here are 9 probiotic strains that can help.

 

24. Theanine

Theanine is an amino acid primarily found in tea leaves.

But it can also be taken as a supplement. 

Theanine is known for its calming effects and ability to enhance focus and cognitive performance.

It crosses the blood-brain barrier and interacts with the brain's neurotransmitter systems, including glutamate.

In fact, theanine acts as a glutamate antagonist. This means it binds to the same receptors in the brain as glutamate, but does not activate them. Instead, it reduces the overall activity of glutamate and prevents overstimulation (58). 

Theanine is also known to increase levels of GABA in the brain. GABA is an inhibitory neurotransmitter that counterbalances the excitatory action of glutamate (59). 

Theanine is definitely one of my favorite compounds for optimal mental health because it stimulates many other neurotransmitters, including dopamine

This stress-relief supplement includes theanine.

 

25. Taurine

Taurine is a sulfur-containing amino acid.

It is widely distributed throughout the body and plays multiple roles in supporting overall health. 

One of its most intriguing functions, however, is its interaction with neurotransmitters, including glutamate.

Taurine is known to interact with the glutamate system in several ways. 

First of all, it acts as a modulator of glutamate activity. It helps to keep glutamate within a healthy range and prevents overexcitation of neurons that can occur with excessive glutamate (60). 

Taurine also enhances the activity of GABA, the primary inhibitory neurotransmitter that counterbalances glutamate (61). 

Lastly, it regulates calcium flow in neurons. The uncontrolled influx of calcium is one mechanism through which excessive glutamate can damage neurons. Therefore, taurine can help protect the brain against the detrimental effects of excess glutamate (62). 

Taurine is mainly found in animal products such as meats and dairy.

If you’re following a vegetarian or vegan diet, or if you struggle with chronic anxiety, I highly recommend supplementing with taurine. 

Taurine is included in the Optimal Calm supplement. 

 

26. GABA Supplements

GABA (gamma-aminobutyric acid) is the main inhibitory neurotransmitter in the brain, acting as a counterbalance to excitatory neurotransmitters like glutamate. 

You can also take GABA as a supplement. 

GABA supplements are often used to promote relaxation, reduce stress, and improve sleep. 

They can also play a significant role in maintaining glutamate levels.

GABA and glutamate function in a sort of seesaw manner. 

When the activity of one increases, the other decreases. By boosting GABA levels, GABA supplements can help keep glutamate levels in check (63). 

Many people claim to experience benefits from taking GABA as a supplement.

However, it's worth noting that there's some debate over the effectiveness of GABA supplements

GABA has difficulty crossing the blood-brain barrier.

As a result, some researchers suggest that the benefits of GABA supplements may actually be due to their effects on the gut-brain axis, rather than a direct increase in brain GABA levels (64). 

I personally don’t recommend taking GABA supplements because in most cases, it simply does not appear to cross the blood-brain barrier. 

I have never found any benefits or noticed any effects (positive or negative) from taking GABA supplements. They never reduced my anxiety, and therefore I don’t feel comfortable recommending them.

You’re better off just taking supplements that naturally increase GABA (such as theanine and taurine) instead of taking GABA supplements directly.

However, there is another related compound called “phenibut” that works and can often help people. 

Phenibut is an altered variation of GABA with powerful anti-stress, anti-anxiety, pro-relaxation and pro-sleep quality effects.

Phenibut can travel across the blood-brain barrier and thus have a very strong effect on sleep quality and anxiety levels.

The problem with Phenibut is that it’s addictive like benzodiazepines and you could experience strong withdrawal effects if you take it regularly and then try to stop it. For this reason, I can’t recommend it.

However, Phenibut is legal in most countries and you can buy it online. If you do decide to use it, you should use it sparingly during special occasions when you really need to reduce your stress and anxiety, such as before an important nerve-wracking public speaking engagement or presentation.

 

27. Resveratrol

Resveratrol is a naturally occurring polyphenol found in grapes, berries, peanuts, and red wine.

It is best known for its antioxidant and anti-inflammatory properties. 

It’s been shown to increase NGF, help restore the integrity of the blood-brain barrier, and support your mitochondria.

However, this compound also interacts with the brain's neurotransmitter systems, including the glutamate pathway.

Research suggests that resveratrol modulates the activity of NMDA receptors, a type of glutamate receptor. It appears to inhibit the overactivation of these receptors, protecting against the harmful effects of excessive glutamate activity (65). 

Studies have also shown that resveratrol can enhance the uptake of glutamate from the synaptic cleft (the gap between neurons where neurotransmitters are released). This can help prevent the accumulation of excess glutamate and protect neurons from overexcitation (66). 

To consume enough resveratrol to reduce glutamate, you’ll need to supplement with it.

Resveratrol is included in this supplement.

 

28. Curcumin

Curcumin is the active component of turmeric, the spice that gives curry its yellow colour.

It is widely recognized for its potent antioxidant and anti-inflammatory properties. 

But its impact extends to the realm of neurotransmission as well, particularly glutamate.

Research indicates that curcumin can influence the activity of NMDA receptors, a specific type of glutamate receptor. It inhibits the overactivation of these receptors, safeguarding against potential harm from an overabundance of glutamate (67). 

Chronic inflammation can disrupt neurotransmitter balance and cause glutamate surges. But curcumin's powerful anti-inflammatory action can help mitigate this risk as well (68). 

Curcumin is included in the Optimal Energy and Optimal Antiox supplements. 

Since curcumin is fat soluble, it’s best absorbed when combined with a fatty meal or taken with fats like coconut oil or olive oil.

 

29. N-Acetyl-Cysteine (NAC)

N-Acetyl-Cysteine (NAC) is a derivative of the amino acid cysteine.

It’s widely used as a supplement due to its antioxidant properties.

It also plays a role in the synthesis of glutathione, a potent antioxidant in the body. 

Beyond these benefits, NAC has a specific interaction with glutamate in the brain.

NAC influences the glutamate system in a unique way by modulating the activity of the cystine-glutamate antiporter, a protein that regulates glutamate release into the synaptic cleft (the space between neurons where neurotransmitters are released).

By promoting the exchange of cystine for glutamate, NAC can help maintain balanced glutamate levels and prevent excessive glutamate activity (69). 

NAC also plays a vital role in the body’s detoxification processes. This can help protect the brain from harmful toxins that can disrupt glutamate regulation.

If you are interested in trying NAC, it’s included in the Optimal Antiox supplement. 

But make sure you read this previous article first to learn how I used NAC to optimize my brain function and mental health.

 

Enjoy This Article? You Might Also Like My FREE Food Guide for Optimal Brain and Mental Health!

Click here to subscribe

Live Optimally, 

Jordan Fallis 

Connect with me

References:

(1) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416367/ 

(2) https://www.ncbi.nlm.nih.ghttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079330/ 

(3) https://mta.cairnrepo.org/islandora/object/mta%3A29243 

(4) hthttps://www.frontiersin.org/articles/10.3389/fpsyg.2018.00509/full 

(5) https://pubmed.ncbi.nlm.nih.gov/12579515/ 

(6) https://pubmed.ncbi.nlm.nih.gov/28579942/ 

(7) https://www.nature.com/articles/nrn3138 

(8) https://pubmed.ncbi.nlm.nih.gov/22216057/ 

(9) https://pubmed.ncbi.nlm.nih.gov/20399151/ 

(10) https://pubmed.ncbi.nlm.nih.gov/22365651/ 

(11) hhttps://pubmed.ncbi.nlm.nih.gov/22365651/ 

(12) https://pubmed.ncbi.nlm.nih.gov/25783612/ 

(13) https://pubmed.ncbi.nlm.nih.gov/23022326/ 

(14) https://www.frontiersin.org/articles/10.3389/fnhum.2017.00051/full 

(15) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880190/ 

(16) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729685/ 

(17) https://pubmed.ncbi.nlm.nih.gov/18941572/ 

(18) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4002277/ 

(19) https://jpet.aspetjournals.org/content/304/1/1 

(20) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2908954/ 

(21) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4002277/ 

(22) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2425011/ 

(23) https://jpet.aspetjournals.org/content/304/1/1 

(24) https://pubmed.ncbi.nlm.nih.gov/19422321/ 

(25) hhttps://pubmed.ncbi.nlm.nih.gov/10842598/ 

(26) https://pubmed.ncbi.nlm.nih.gov/16481110/ 

(27) https://pubmed.ncbi.nlm.nih.gov/15913569/ 

(28) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4404917/ 

(29) https://pubmed.ncbi.nlm.nih.gov/18037281/ 

(30) https://pubmed.ncbi.nlm.nih.gov/26742060/

(31) https://pubmed.ncbi.nlm.nih.gov/28900017/

(32) https://www.nature.com/articles/nrn3504 

(33) https://elifesciences.org/articles/61339 

(34) https://www.ncbi.nlm.nih.gov/books/NBK507250/ 

(35) https://www.ncbi.nlm.nih.gov/books/NBK507254/ 

(36) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6024559/ 

(37) https://pubmed.ncbi.nlm.nih.gov/12495627/ 

(38) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678825/ 

(39) https://www.ncbi.nlm.nih.gov/books/NBK507254/ 

(40) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2248201/ 

(41) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467949/ 

(42) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649700// 

(43) https://pubmed.ncbi.nlm.nih.gov/29164598/ 

(44) https://www.mdpi.com/2076-3921/12/2/231 

(45) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271793/ 

(46) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747438/ 

(47) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5733950/ 

(48) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821814/ 

(49) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492967/ 

(50) https://pubmed.ncbi.nlm.nih.gov/18353558 

(51) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1464795/ 

(52) https://pubmed.ncbi.nlm.nih.gov/11657840// 

(53) https://pubmed.ncbi.nlm.nih.gov/28198207/ 

(54) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4365688/ 

(55) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846529// 

(56) https://pubmed.ncbi.nlm.nih.gov/22612585/ 

(57) https://pubmed.ncbi.nlm.nih.gov/28555037/ 

(58) https://pubmed.ncbi.nlm.nih.gov/17182482/ 

(59) https://pubmed.ncbi.nlm.nih.gov/12499631/ 

(60) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2994408/ 

(61) https://pubmed.ncbi.nlm.nih.gov/18171928/ 

(62) https://pubmed.ncbi.nlm.nih.gov/12908639 

(63) https://www.frontiersin.org/articles/10.3389/fpsyg.2015.01520/full 

(64) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6005194/ 

(65) https://pubmed.ncbi.nlm.nih.gov/22709670// 

(66) https://pubmed.ncbi.nlm.nih.gov/17554623/ 

(67) https://pubmed.ncbi.nlm.nih.gov/22359574/ 

(68) https://pubmed.ncbi.nlm.nih.gov/34754179 

(69) https://pubmed.ncbi.nlm.nih.gov/21118657/ 

(70) https://pubmed.ncbi.nlm.nih.gov/24361499/ 

(71) https://www.semanticscholar.org/paper/Excitotoxicity-and-nitric-oxide-in-Parkinson%27s-Beal/46eaa5bfb2c8dc0b2fcf903a848f5e37c86231a6 

(72) https://pubmed.ncbi.nlm.nih.gov/22646481/ 

(73) https://pubmed.ncbi.nlm.nih.gov/12925363/ 

(74) https://pubmed.ncbi.nlm.nih.gov/28187219/ 

(75) https://pubmed.ncbi.nlm.nih.gov/10986805/ 

(76) https://pubmed.ncbi.nlm.nih.gov/17574216// 

(77) https://www.nature.com/articles/nature08673 

(78) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327935/ 

(79) https://pubmed.ncbi.nlm.nih.gov/14723991/ 

(80) https://www.nature.com/articles/nrn1722 

(81) https://pubmed.ncbi.nlm.nih.gov/12490568/ 

(82) https://pubmed.ncbi.nlm.nih.gov/19951898/ 

(83) https://pubmed.ncbi.nlm.nih.gov/16473439/ 

(84) https://pubmed.ncbi.nlm.nih.gov/24361499/ 

(85) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187770/ 

(86) https://pubmed.ncbi.nlm.nih.gov/16192835/ 

(87) https://pubmed.ncbi.nlm.nih.gov/22318195/

(88) https://pubmed.ncbi.nlm.nih.gov/19828810// 

(89) https://pubmed.ncbi.nlm.nih.gov/21827775/ 

(90) https://pubmed.ncbi.nlm.nih.gov/22306277/

(91) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3446237/

Terms and Conditions

Privacy Policy

Affiliate Disclosure

Disclaimer

The Brain and Mental Health Benefits of Low-Level Laser Therapy (LLLT) & Photobiomodulation

Low-level laser/light therapy (LLLT) is an important treatment that I have used over the years to support my brain after serious concussions, toxic mold exposure and multiple psychiatric prescriptions

And in my experience, it is one of the most efficient ways to boost brain function and improve mental health. 

Yet your doctor likely has no idea what it is. 

It’s about as cutting-edge as it gets, and even more unconventional than neurofeedback. But it works. 

Also known as photobiomodulation, LLLT is the application of low-power lasers or light-emitting diodes (LEDs) to the body for therapeutic purposes.  When LLLT is applied to the brain, it is known as transcranial LLLT or transcranial photobiomodulation (44). 

LLLT has been around since 1967, and there are now more than four thousand scientific studies showing that it can help treat a variety of disorders without any harmful effects. Unlike high-intensity surgical lasers, low-powered lasers do not cut or burn tissue. Instead, these lasers stimulate a biological response and encourage cells to function properly (11, 12, 33). 

And luckily, it’s very easy to treat yourself at home with LLLT using red and infrared light.

I have used three main devices on my brain. They significantly improved the quality of my life over the years.

Make sure you read the Recommended Devices section below, where I discuss the different devices I have used. 

Picture of mitochondria being irradiated and stimulated by red and infrared light.

How It Works

Research shows that red and infrared light between the wavelengths of 632 nanometers (nm) and 1064 nm produce positive biological effects. For brain cells, the optimal range appears to be between 800 nm and 1000 nm, as these wavelengths can penetrate the scalp and skull and reach the brain (19, 20, 25-31).

The devices I have used fall within this range. 

The light emitted from the devices below stimulate a photochemical reaction within cells, which can accelerate the natural healing process and cause beneficial changes in behaviour (45).

How does it do this?

Mainly by supporting your mitochondria

As I’ve discussed before, mitochondria are considered the “powerhouses of the cell,” generating most of the energy in your body in the form of adenosine-5’- triphosphate (ATP). 

ATP is your body’s main source of cellular fuel. You are constantly using it, and your brain needs enough of it to work properly. 

Proper mitochondrial function and ATP production is critical for neuroprotection, cognitive enhancement, and the prevention and alleviation of several neurological and mental disorders (46).

And research demonstrates that transcranial LLLT supports mitochondrial function and significantly increases the production of ATP in the brain (3-5, 8-10, 13-17, 21-22, 34, 45).

Your mitochondria contain photoacceptors that absorb the photons from light and convert them into ATP – energy that can be used to perform cellular tasks and biological processes (39, 40).

This process is comparable to plant photosynthesis, during which sunlight is absorbed by plants and converted to energy for the plants to grow (23, 24). 

By stimulating the mitochondria and producing more ATP, LLLT gives brain cells extra ATP energy to work better and heal and repair themselves.

On top of this, LLLT has also been shown to:

Click here to subscribe

My Experience and What You Should Expect

LLLT is one of the most impactful and helpful actions I took to optimize my brain and mental health.

Man using LLLT helmet and intranasal Vielight device.

By the time I was off all psychiatric medications, I had lost a lot of my full cognitive capabilities. Thankfully, LLLT helped restore them.

Here are some of the results I noticed:

  • Increased cognitive function

  • Sharper thinking

  • Improved mood, concentration, alertness

  • Less fatigue and reduced need for sleep

  • More mental motivation, endurance and productivity

Overall, it improved my mental constitution. I didn’t get as fatigued and worn down as easily and I could focus and think harder for longer periods of time.

LLLT also has a cumulative effect. Your brain becomes stronger and more resilient over time as you do the treatment consistently.  

It allowed me to reduce the number of supplements I was taking daily. I now realize that I needed the treatment for many years, but I just didn’t know it existed.

Luckily, I started treating myself on a regular basis and have never felt better. 

Many serious brain injuries and mental illnesses can be successfully treated with LLLT, including depression, anxiety, post-traumatic stress disorder, traumatic brain injury, post-concussion syndrome, stroke and Alzheimer's disease.

I explore how LLLT has been shown to help each of these disorders below. Feel free to skip to the disorder you're struggling with to learn more.

 

Depression and Anxiety

Studies in rats and humans provide evidence that LLLT improves mood and decreases depressive symptoms.

In 2009, researchers took 10 patients with a history of major depression and anxiety (including post-traumatic stress disorder and substance abuse) and applied LLLT to their foreheads for four weeks. At the end of the study, six of the 10 patients experienced a remission of their depression, and seven of the 10 patients experienced a remission of their anxiety. There were no observable side effects (54). 

The data supports that LLLT to the head constitutes a promising neurotherapeutic tool to modulate behaviour in a non-invasive manner.
— Dr. Julio C. Rojas, MD, PhD, University of California

This makes sense considering that several studies show that depression is linked to abnormal blood flow in the frontal cortex of the brain, and LLLT increases blood flow and circulation (47, 53). 

Other studies have shown that participants report a significant increase in positive emotions and a reduction in depressive symptoms for two weeks after LLLT treatment (55-57). 

Sufferers of traumatic brain injury (TBI) also experience a decrease in depression, anxiety, irritability and insomnia, and an overall improvement in quality of life, because of LLLT (58, 59).  

I personally experienced all of these results.

 

Traumatic Brain Injury

Traumatic brain injury (TBI) is a growing health concern. An estimated 1.7 million people sustain a TBI annually in the U.S. (60). 

Mild TBIs (concussions) make up 75 per cent of all brain injuries. Military personnel deployed to Iraq and Afghanistan frequently experience mild TBI while overseas, and many months after they return home, they often struggle with PTSD, depression and anxiety (61, 62). 

And research shows that transcranial LLLT can help (63). 

I personally experienced this. In 2010, I suffered multiple concussions while living in a moldy home, and thankfully LLLT helped me recover from post-concussion syndrome.

A number of human studies show that patients with chronic mild TBI experience improved cognition, memory and sleep with LLLT treatment. 

One study examined whether LLLT could help 11 patients with chronic mild TBI symptoms. They all had cognitive dysfunction, and four of them had multiple concussions like I did. 

After 18 LLLT sessions, their cognition, memory and verbal learning improved. Participants also said they slept better and had fewer PTSD symptoms. Coworkers, friends and family reported improved social, interpersonal, and occupational functioning (65). 

If LLLT was a drug, we would definitely be hearing about it.

In another study, 10 people with chronic TBI were given 10 treatments of LLLT (810 nm) and witnessed a reduction in headaches, cognitive dysfunction, sleep problems, anxiety, depression and irritability (66). 

There have also been a few case studies showing beneficial effects of transcranial LLLT in TBI patients (67, 68):

Seven years after closed-head TBI from a motor vehicle accident, case 1 (a 66-year-old woman) began transcranial LED treatments. Before LLLT treatment, she could focus on her computer for only 20 minutes. After eight weekly LLLT treatments, her focused computer time increased to 3 hours. She has treated herself nightly at home for 5.5 years now and maintains her improved cognition at age 72 years.
Case 2 (a 52-year-old retired, high-ranking female military officer) had a history of multiple closed-head injuries. Before beginning LLLT treatments, she was on medical disability for 5 months. After 4 months of nightly LLLT treatments at home, she returned to working full-time as an executive consultant with an international technology consulting firm and discontinued medical disability. Neuropsychological testing performed after 9 months of transcranial LED showed significant improvement in cognition and memory, as well as reduction in post-traumatic stress disorder symptoms.
Case 3 received 20 LLLT treatments over two months and experienced highly favourable outcomes with decreased depression, anxiety, headache, and insomnia, whereas cognition and quality of life improved.

So LLLT can improve cognition, reduce costs in TBI treatment and be applied at home?

Hmm, sounds like something the pharmaceutical industry would not like people to know about – and something that would force them to lose a lot of life-long customers. 

Several mouse studies also show that transcranial LLLT can prevent cell death and increase neurological performance after TBI (69-72). 

Researchers believe that LLLT works so well for people struggling with TBI symptoms because mitochondria in the brain are significantly dysfunctional after TBI, resulting in an inadequate supply of ATP, and LLLT can support the mitochondria and increase ATP production (73-75, 79). 

There is also poor blood flow and oxygenation, and increased inflammation and oxidative stress in the brain after head injuries. This contributes to brain damage, but LLLT can help combat these problems, increase antioxidants, promote neurogenesis and relieve chronic symptoms (76-78, 80-83).

Click here to subscribe

Alzheimer's Disease and Cognitive Impairment

Research shows that LLLT can boost performance and improve cognitive function, including attention and memory, in elderly people, young healthy people and animals.  

Preliminary studies demonstrate that LLLT could slow down the progression of Alzheimer’s disease by decreasing a protein in the brain that is linked to dementia (84-86, 94). 

Downregulation of brain-derived neurotrophic factor (BDNF) occurs early in the progression of Alzheimer's disease, and LLLT has been shown to prevent brain cell loss by upregulating BDNF (87). 

LLLT could be used as a preventive intervention in people who present risk factors for Alzheimer’s disease, mild cognitive impairment, or a history of head trauma. In such patients, LLLT could be combined with cognitive intervention approaches.
— Dr. Francisco Gonzalez-Lima, PhD, University of Austin, Texas

Researchers have also applied LLLT to middle-aged mice, and discovered that the memory and cognitive performance of the middle-aged mice improved so much that it was comparable with that of young mice. The researchers concluded that LLLT should be “applied in cases of general cognitive impairment in elderly persons” (5, 88). 

Several others studies have shown that LLLT significantly increases alertness, awareness and sustained attention, and improves short-term memory and reaction time. Study participants also made fewer errors during tasks and tests (89-91, 93, 95). 

Another study found that LLLT was just as effective as exercise at enhancing cognition, likely by providing neuroprotection and supporting the mitochondria (92, 96).

 

Stroke

Multiple studies show that LLLT can significantly reduce brain damage and improve recovery outcomes after a stroke (110-113). 

In one study, researchers applied LLLT over the entire surface of the head of stroke patients approximately 18 hours after a stroke. Five days after the stroke, they found significantly greater improvements in the LLLT-treated group. The improvements continued 90 days after the stroke. At the end of the study, 70% of the patients treated with real LLLT had a successful outcome compared with only 51% of the control subjects (114). 

Follow up studies with over 600 stroke patients found similar beneficial results. Researchers believe increase in the production of ATP is responsible for the improvements (115, 116, 117).  

Numerous studies also show that LLLT significantly reduces neurological problems and improves behaviour in rats and rabbits after stroke. It also increases the growth of new brain cells in these animals, improving their overall recovery (118-124).

 

Other Disorders

There are a number of other disorders that can also improve with LLLT treatment: 

  • Parkinson’s disease (PD) – “Mitochondria in PD tissues are compromised, and LLLT could be developed as a novel treatment to improve neuronal function in patients with PD” (109).

  • Amyotrophic lateral sclerosis (ALS) - Mitochondrial dysfunction and oxidative stress play an important role in motor neuron loss in ALS. Motor function significantly improved with LLLT in a group of people in the early stage of the disease (99).

  • Autism – Linked to mitochondria dysfunction and inflammation, so LLLT would likely help (103, 104).

  • Bipolar disorder – Linked to mitochondria dysfunction and inflammation (105, 106, 107)

  • Schizophrenia – Linked to mitochondria dysfunction and inflammation (105, 106)

  • Smoking Cessation – Check out this video.

  • Alcoholism (101, 102)

  • Opiate addiction (102)

  • Headaches and migraines (108)

  • Acne - This is unrelated to brain health but LLLT can also treat acne. Improving my diet helped me overcome my acne many years ago, but I definitely wish I had known about LLLT when I had it. An integrative physician I know has had a lot of success with her patients struggling with acne and other skin issues (97, 98).

Recommended Devices

I first discovered LLLT when reading Dr. Norman Doidge’s book, The Brain's Way of Healing: Remarkable Discoveries and Recoveries from the Frontiers of Neuroplasticity.

Dr. Doidge talks about the BioFlex Laser Therapy equipment, which costs tens of thousands of dollars.

I found an integrative physician who owned a Bioflex and I gave it a try. 

After a few sessions, I started experiencing beneficial effects.

So I decided to go ahead and buy my own LLLT devices for much cheaper.

I ended up finding and trying a number of different LLLT devices myself

They were much less expensive than the Bioflex, and I wanted to see how they compared to the Bioflex.

Many of the devices I bought didn't help me very much because they weren't powerful enough.

Most light devices aren't very effective at penetrating the skull.

But after a lot of research, and trial and error, I found devices that were powerful enough.

And they did help me.

And they provided me with the same brain and mental health benefits as the expensive Bioflex.

Here are the three devices I now recommend because they actually work:

  • Optimal 1000 Brain Photobiomodulation Therapy Light (Combo Red/NIR) - This is a powerful device that shines 660 nm of red light and 850 nm of infrared light. Like I have, you can shine it on your forehead for 5 minutes every day. You can also shine it on other parts of your head and on your entire body, including on your thyroid, thymus gland and gut. I have experienced incredible benefits from doing this.

  • Optimal 300 Brain Photobiomodulation Therapy Light (Combo Red/NIR) - This is a smaller and more convenient device that I have taken with me when travelling.

  • Vielight Neuro Duo – This is a transcranial-intranasal headset with 810 nm of near infrared light. It penetrates deeper into brain tissue and is absorbed better by the central nervous system. If you decide to get this one, you can use the coupon code JORDANFALLIS for a 10% discount. Some research has shown a 20-fold higher efficiency of light delivery to the deep brain through the nose instead of transcranial application (125). Vielight has several different devices and you can also use the coupon code JORDANFALLIS for 10% off any of them.

Unlike most pharmaceuticals, LLLT is very safe, non-toxic and non-invasive, so you can easily try it on yourself without concern and see if it helps you like it has helped me (33, 34, 126). 

You can shine the light all over your head. But start slow and apply the light to different areas of your head for just 1-2 minutes, maybe even less if you’re really sensitive. Then work your way up to longer periods of time, perhaps 5-10 minutes per area. There’s no exact proper way to do this. Listen to your body and see how it affects you. 

It’s important to note that some people experience grogginess and fatigue after using LLLT. I experienced this the day after my first treatment. I was incredibly tired and lethargic. This was a sign that I did too much. 

If you feel extremely tired immediately after LLLT or the next day, take a break and do less next time. For example, if you applied light to your forehead for 3 minutes, then drop back down to 2 minutes for your next session. 

It is also important to cycle LLLT. The way it works is similar to exercise, so you need to take breaks in order to heal and get stronger. Using it everyday can cause a burnout effect. You can use it every other day to give your brain a chance to recover.

 

More Details on How I’ve Used the Optimal 1000 Therapy Light

Someone recently asked me for more details on how to use the Optimal 1000 Brain Photobiomodulation Therapy Light (Combo Red/NIR). So I thought I’d share what I told them here:

I usually hang the Optimal 1000 Brain Photobiomodulation Therapy Light (Combo Red/NIR) on my door, and then start by standing in front of it for about 10 minutes. I would say I'm about 1 or 2 feet away so that the light is shining on most of my body. I tend to prioritize my upper body though, particularly my thyroid, gut, thymus gland, and of course my head. But what I've found is that shining it on other parts of your body (besides my brain) actually leads to indirect cognitive benefits as well. So it's not just shining it on the brain that helps with cognitive function.

I will also sometimes turn my back to the light and shine it on my back and spine area, and on the back of my head, for about 5 to 10 minutes.

I also get much closer (perhaps about 2-3 inches away) and shine it just on my forehead for 4-5 minutes or so. It is safe to do this because our devices emit a very low, safe level of EMFs.

So what I usually do is 10 minutes on my entire body and then right after that, 5 minutes on my face/forehead. But it's completely fine to do them separately at different times of the day or on completely separate days if you want.

It's usually good to limit your exposure to a maximum of 20 minutes at a time though, because too much at one time can make you too tired and negate the beneficial effects.

The back of your head where your spine meets your skull is another great area to shine the light. I also like to shine the light on the sides of my head (around my ears) for a few minutes each.

 

Conclusion

Frankly, it’s ridiculous that this therapy is not more well-known and promoted by doctors. But like everything else on this website, you don’t have to wait for conventional medicine to catch up, and you can experiment with the LLLT devices yourself. There is a high benefit-to-risk ratio. 

I suspect that home-use application of LLLT will become much more popular in the coming years.

The remarkable effects of the treatment in healing the brain in a non-invasive manner, along with the fact that there is little evidence of any adverse side effects, suggests to me that it’s use will only increase.

At the same time, distrust in pharmaceuticals continues to grow because of uncertain efficacy and unbearable side effects. 

And as the Western population continues to age, the incidence of the degenerative brain diseases will only continue to increase, which will produce a severe financial and societal burden.

So people will realize they are at a disadvantage by not having their own device(s) and will start using them on a regular basis for optimal mental health and cognition.

 
Click here to subscribe

Live Optimally,

Jordan Fallis

Connect with me

References:

(1) http://www.ncbi.nlm.nih.gov/pubmed/23003120

(2) http://www.ncbi.nlm.nih.gov/pubmed/23281261

(3) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945284/

(4) http://www.ncbi.http://www.ncbi.nlm.nih.gov/pubmed/21274733lm.nih.gov/pubmed/21274733

(5) http://www.http://www.ncbi.nlm.nih.gov/pubmed/22850314.nlm.nih.gov/pubmed/22850314

(6) http://www.ncbi.nlm.nih.gov/pubmed/15954817

(7) http://onlinelibrary.wiley.com/doi/10.1002/lsm.20583/abstract

(8) http://www.ncbi.nlm.nih.gov/pubmed/9421973

(9) http://www.ncbi.nlm.nih.gov/pubmed/11959421

(10) http://www.ncbi.nlm.nih.gov/pubmed/17603858

(11) http://www.ncbi.nlm.nih.gov/pubmed/5098661  

(12) http://www.ncbi.nlm.nih.gov/pubmed/4659882

(13) http://www.ncbi.nlm.nih.gov/pubmed/10365442/

(14) http://www.ncbi.nlm.nih.gov/pubmed/6479342/ 

(15) http://www.ncbi.nlm.nih.gov/pubmed/2476986/

(16) http://www.ncbi.nlm.nih.gov/pubmed/17463313/

(17) http://www.ncbi.nlm.nih.gov/pubmed/19837048/

(18) http://www.ncbi.nlm.nih.gov/pubmed/19995444/

(19) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2442599/

(20) http://www.sciencedirect.com/science/article/pii/S0004951414601276

(21) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3288797/

(22) http://www.ncbi.nlm.nih.gov/pubmed/23239434?dopt=AbstractPlus

(23) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953713/

(24) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065857/

(25) https://www.ncbi.nlm.nih.gov/pubmed/26535475

(26) https://www.ncbi.nlm.nih.gov/pubmed/26347062

(27) https://www.ncbi.nlm.nih.gov/pubmed/24568233

(28) https://www.ncbi.nlm.nih.gov/pubmed/21182447

(29) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796659/

(30) http://stroke.ahajournals.org/content/40/4/1359.long

(31) https://www.ncbi.nlm.nih.gov/pubmed/17463313

(32) http://www.medscape.com/viewarticle/775815

(33) https://www.psio.com/pdf/LLLT-of-eye-and-brain.pdf

(34) http://www.ncbi.nlm.nih.gov/pubmed/6200808

(35) http://www.ncbi.nlm.nih.gov/pubmed/22275301

(36) http://www.ncbi.nlm.nih.gov/pubmed/17439348

(37) http://www.ncbi.nlm.nih.gov/pubmed/17868110

(38) http://www.ncbi.nlm.nih.gov/pubmed/26202374

(39) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3288797/

(40) http://www.isabelleverbeek.nl/wp-content/uploads/2014/05/A2-cognitie-Gonzalez-softlaser-fotonen-therapie-2014b.pdf

(41) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065857/

(42) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538543/

(43)https://www.researchgate.net/publication/273781132_Red_and_NIR_light_dosimetry_in_the_human_deep_brain

(44) http://www.ncbi.nlm.nih.gov/pubmed/25772014

(45) http://www.ncbi.nlm.nih.gov/pubmed/19837048

(46) http://www.sciencedirect.com/science/article/pii/S0006295213007417

(47) http://www.ncbi.nlm.nih.gov/pubmed/15025051

(48) http://www.ncbi.nlm.nih.gov/pubmed/16043128

(49) http://www.ncbi.nlm.nih.gov/pubmed/12946880

(50) http://www.ncbi.nlm.nih.gov/pubmed/15061044

(51) http://www.ncbi.nlm.nih.gov/pubmed/15570642

(52) http://www.ncbi.nlm.nih.gov/pubmed/12181629

(53) http://www.ncbi.nlm.nih.gov/pubmed/10739143

(54) http://www.ncbi.nlm.nih.gov/pubmed/19995444

(55) https://www.ncbi.nlm.nih.gov/pubmed/27267860

(56) http://dose-response.org/wp-content/uploads/2014/06/Gonzalez-Lima_2014.pdf

(57) https://www.ncbi.nlm.nih.gov/pubmed/23200785

(58) https://www.ncbi.nlm.nih.gov/pubmed/26535475

(59) https://www.ncbi.nlm.nih.gov/pubmed/26347062

(60) https://www.cdc.gov/traumaticbraininjury/pdf/bluebook_factsheet-a.pdf

(61) http://www.ncbi.nlm.nih.gov/pubmed/18234750/

(62) https://www.cdc.gov/traumaticbraininjury/pdf/mtbireport-a.pdf

(63) http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0053454

(65) https://www.ncbi.nlm.nih.gov/pubmed/24568233

(66) https://www.ncbi.nlm.nih.gov/pubmed/26347062

(67) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3104287/

(68) https://www.ncbi.nlm.nih.gov/pubmed/26535475

(69) http://www.ncbi.nlm.nih.gov/pubmed/17439348/

(70) http://www.ncbi.nlm.nih.gov/pubmed/19800810/

(71) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538543/

(72) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3397203

(73) http://www.ncbi.nlm.nih.gov/pubmed/11059663

(74) http://www.ncbi.nlm.nih.gov/pubmed/19637966

(75) http://www.ncbi.nlm.nih.gov/pubmed/16120426

(76) http://www.ncbi.nlm.nih.gov/pubmed/18501200/

(77) http://www.ncbi.nlm.nih.gov/pubmed/19995444/

(78) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3397203/

(79) http://www.ncbi.nlm.nih.gov/pubmed/17439348/

(80) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3397203/

(81) http://www.ncbi.nlm.nih.gov/pubmed/17439348/

(82) http://www.ncbi.nlm.nih.gov/pubmed/17439348

(83)https://www.researchgate.net/publication/229161498_Transcranial_low_level_laser_light_therapy_for_traumatic_brain_injury

(84) http://www.ncbi.nlm.nih.gov/pubmed/18769048/

(85) https://www.researchgate.net/publication/263742704_Low-Level_Laser_Therapy_Ameliorates_Disease_Progression_in_a_Mouse_Model_of_Alzheimer%27s_Disease

(86) http://www.ncbi.nlm.nih.gov/pubmed/24994540

(87) http://www.ncbi.nlm.nih.gov/pubmed/23946409

(88) http://www.ncbi.nlm.nih.gov/pubmed/17855128/

(89) https://www.ncbi.nlm.nih.gov/pubmed/23200785

(90) https://www.ncbi.nlm.nih.gov/pubmed/27080072

(91) https://www.ncbi.nlm.nih.gov/pubmed/26017772

(92) https://www.ncbi.nlm.nih.gov/pubmed/27220529

(93) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953713/

(94) http://www.ncbi.nlm.nih.gov/pubmed/24387311

(95) http://www.sciencedirect.com/science/article/pii/S1074742707001153

(96) http://www.ncbi.nlm.nih.gov/pubmed/23806754

(97) http://www.ncbi.nlm.nih.gov/pubmed/22615511

(98) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3352636/

(99) http://www.ncbi.nlm.nih.gov/pubmed/19143012/

(100) https://www.ncbi.nlm.nih.gov/pubmed/26817446

(101) http://www.ncbi.nlm.nih.gov/pubmed/15674998/

(102) http://www.ncbi.nlm.nih.gov/pubmed/19995444

(103) http://www.ucdmc.ucdavis.edu/publish/news/newsroom/8932

(104) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554862/

(105) http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0004913

(106) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626880/

(107) http://www.ncbi.nlm.nih.gov/pubmed/23196997

(108) http://www.ncbi.nlm.nih.gov/pubmed/12811613

(109) http://www.ncbi.nlm.nih.gov/pubmed/19534794/

(110) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538543/

(111) http://www.ncbi.nlm.nih.gov/pubmed/19995444

(112) http://www.ncbi.nlm.nih.gov/pubmed/17463313/

(113) http://www.ncbi.nlm.nih.gov/pubmed/19233936/

(114) http://www.ncbi.nlm.nih.gov/pubmed/17463313/

(115) http://www.ncbi.nlm.nih.gov/pubmed/19233936/

(116) http://www.ncbi.nlm.nih.gov/pubmed/20425181/

(117) http://www.ncbi.nlm.nih.gov/pubmed/19837048/     

(118) http://www.ncbi.nlm.nih.gov/pubmed/19995444

(119) http://www.ncbi.nlm.nih.gov/pubmed/16946145/

(120) http://www.ncbi.nlm.nih.gov/pubmed/17693028/

(121) http://www.ncbi.nlm.nih.gov/pubmed/17678491/

(122) http://www.ncbi.nlm.nih.gov/pubmed/16444697/  

(123) http://www.ncbi.nlm.nih.gov/pubmed/17693028

(124) http://www.ncbi.nlm.nih.gov/pubmed/15155955

(125)https://www.researchgate.net/publication/273781132_Red_and_NIR_light_dosimetry_in_the_human_deep_brain

(126) http://www.ncbi.nlm.nih.gov/pubmed/23675984

Terms and Conditions

Privacy Policy

Affiliate Disclosure

Disclaimer

13 Powerful Ways to Support Your Thyroid & Mental Health

When you know better, you do better.
— Maya Angelou
Picture of the thyroid gland.

Sometimes it may feel as if we have no control over our thoughts and emotions. Our minds can take on a life of their own, with no rhyme or reason as to why we're suddenly sad and anxious.

But there are always underlying causes of these mood swings, and with a better understanding of them, you can learn to manage and overcome them. 

Like I have, you can connect the dots, determine your underlying triggers, learn to control them and even completely eliminate them over time. 

So today I want to talk about thyroid dysfunction. It was one of the underlying issues of my chronic mental illness. 

Your thyroid is a small butterfly-shaped gland located in your neck below your Adam’s apple.

It’s one of your most important glands, producing hormones – thyroxine (T4) and triiodothyronine (T3) – which impact the health and functioning of your entire body.

In fact, normal metabolism and energy levels depend on these hormones. 

Your thyroid also plays a key role in the optimal health and functioning of your brain. It can impact your cognition, concentration, mood, memory and emotions. 

So when your thyroid hormones are out of balance, you can be too, and brain and mental problems can arise.

Your thyroid can either be overactive and produce too much thyroid hormone (hyperthyroidism), or underactive and produce too little thyroid hormone (hypothyroidism).

Hypothyroidism (low thyroid) is much more common, and since I personally struggled with symptoms of hypothyroidism, this post will mostly focus on that.

Picture of thyroid gland.

Hypothyroidism can also be caused by an autoimmune conditions called Hashimoto’s thyroiditis in which the body’s immune system attacks the thyroid tissue.

According to Dr. Datis Kharrazian, author of Why Isn’t My Brain Working? and Why Do I Still Have Thyroid Symptoms?, 90% of people with hypothyroidism have Hashimoto’s. 

Here are some of the common brain and mental health symptoms of low thyroid that I experienced:

  • Chronic fatigue

  • Brain fog

  • Low mood

  • Forgetfulness

  • Weakness

  • Sluggishness

Sounds just like depression, doesn’t it?

 

You Don't Have Mental Illness, You Have Thyroid Problems

Many studies show that people with cognitive, emotional and behavioural disturbances have lower levels of thyroid hormone than the general population, and their psychiatric symptoms improve when they take thyroid hormone.

The following symptoms and disorders have been linked to thyroid problems (69-86): 

  • Depression

  • Anxiety

  • Bipolar disorder, mania and mood swings

  • Irritability and rage

  • Insomnia

  • Paranoid schizophrenia and psychosis

  • Dementia and confusion

  • Social anxiety disorder

  • Generalized anxiety disorder

  • Borderline personality disorder

  • Obsessive-compulsive disorder (OCD)

  • Attention-deficit hyperactivity disorder (ADHD)

In fact, many people struggling with these conditions see better improvements when they are treated with thyroid hormone than when they are treated with psychiatric medication (and experience fewer side effects). 

Psychiatric patients with subclinical hypothyroidism - especially those with incomplete responses to psychotropic therapy - should usually be treated with thyroid hormone. In some patients with no clear evidence of a biochemical or clinical thyroid disorder, mood symptoms nevertheless respond to thyroid hormone.
— Thomas D. Geracioti Jr, MD

A number of different medical practitioners and researchers have written books about how thyroid problems can negatively affect brain and contribute to mental illness:

  • “Brain cells have more thyroid hormone receptors than any other tissue, which means that a proper uptake of thyroid hormone is essential for the brain cells to work properly.” – Dr. Barry Durrant-Peatfield, MD, Author of Your Thyroid and How to Keep It Healthy

  • “How much of what we call “mental illness” is actually thyroid-driven? In my experience, a vast majority.” – Dr. Kelly Brogan, MD, Author of A Mind of Your Own: The Truth About Depression and How Women Can Heal Their Bodies to Reclaim Their Lives

  • "T3 [thyroid hormone] is actually a bonafide neurotransmitter. If you don’t have enough T3, or if its action is blocked, an entire cascade of neurotransmitter abnormalities may ensue, which can lead to mood and energy changes, including depression and anxiety.”– Dr. Christiane Northrup, MD, Author of Women's Bodies, Women's Wisdom: Creating Physical and Emotional Health and Healing

  • “Scientists now consider thyroid hormone one of the major players in brain chemistry disorders. And as with any brain chemical disorder, until treated correctly, thyroid hormone imbalance has serious effects on the patient’s emotions and behavior.” – Dr. Ridha Arem, MD, Author of The Thyroid Solution: A Mind Body Program for Beating Depression and Regaining Your Emotional and Physical Health

  • “There’s a very tight correlation between hypothyroidism and depression. Unfortunately, patients are misdiagnosed with depression when really they have low thyroid. There are well designed clinical trials to show you that your active thyroid hormone is essential to a happy mood. Correcting and nourishing the thyroid gland is absolutely imperative in order to improve mood.” – Suzy Cohen, Author of Thyroid Healthy: Lose Weight, Look Beautiful and Live the Life You Imagine

  • “People with mental health issues have greater rates of thyroid antibodies and Hashimoto's. I've had so many clients who were misdiagnosed. They were on heavy-duty psychotropic medications. They were hospitalized. But it was their thyroid disorder that was causing their issues.” – Dr. Izabella Wentz, PharmD, Author of Hashimoto's Thyroiditis: Lifestyle Interventions for Finding and Treating the Root Cause

So if you struggle with brain or mental illness, you likely do not need a prescription for antidepressants, antipsychotics and anti-anxiety medication. What you really need is to support your thyroid. Treating the underlying thyroid problem is critical to alleviating the associated psychiatric symptoms.

Luckily, there are easy, natural ways for you to do just that.

Below are 13 main strategies I’ve used to balance my thyroid hormones and improve thyroid function. 

Before implementing all of them, I highly recommend getting a full thyroid panel so that you know your starting point.

Click here to subscribe

1. Cut Out Gluten

Certain foods can disrupt proper thyroid function and you should avoid them to optimize brain and mental health. 

Gluten-containing grains (barley, wheat, rye, spelt) are the worst offenders.  

Picture of bread and bagels, which are full of gluten and worsen thyroid function.

The problem with gluten is that it can increase intestinal permeability (leaky gut syndrome). When this happens, small particles of food can leak into your bloodstream. Your immune system sees these food particles as foreign entities and attacks them, increasing inflammation throughout your body. 

On top of this, the molecular structure of gliadin (the protein found in gluten) resembles that of the thyroid gland. So when gliadin enters your bloodstream, your immune system not only attacks the gliadin, but also your thyroid tissue because of its close resemblance. And this can cause many brain and mental health problems (11-13). 

Research shows that people with celiac disease and gluten intolerance are more likely to have thyroid diseases and mental illnesses, and vice versa (1-10). 

Many people that have hypothyroidism really have gluten sensitivity. Over time, they actually have significant brain degeneration. When people degenerate their brain, one of the first things they get is depression.
— Dr. Datis Kharrazian

Thyroid function, and therefore brain and mental health, will often improve after the elimination of gluten-containing grains. 

 

2. Eat Enough Calories and Carbohydrates

Making sure you eat enough calories and carbohydrates on a daily basis is critical for optimal thyroid and brain function.  

A landmark paper, known as the Vermont Study, found that thyroid hormone drops when you don’t eat enough calories and carbohydrates (14). 

Person holding potatoes in their hands.

Several other studies also show that ketogenic low-carb diets can suppress thyroid function and reduce thyroid hormone. This is because carbohydrates play a key role on the production of thyroid hormone (15-18). 

In previous posts, I have mentioned that fasting and ketogenic dieting can have beneficial effects on your brain. This is still true. However, it's important to note fasting and low-carb diets should be followed intermittently and not consistently over long stretches of time, mainly because of their detrimental effects on the thyroid. I prefer to take exogenous ketones instead. They immediately increase my mental clarity without having to restrict carbohydrates. 

My Free Grocery Shopping Guide for Optimal Brain Health contains plenty of healthy, nutrient-dense sources of carbohydrate, including:

  • Yams

  • Squash

  • Potatoes

  • Carrots

  • Other root vegetables

  • Berries

  • Apples

  • Bananas

  • Raw honey

 

3. Avoid Vegetable Oils

You should also significantly limit all refined vegetable oils, including soybean, corn, safflower, sunflower, and canola. 

These oils are predominantly made up of omega-6 polyunsaturated fatty acids (PUFAs), which are highly unstable and oxidize very easily within your body. 

Unfortunately, like gluten, rancid PUFAs are everywhere and hard to avoid. Most commercially-prepared processed foods include them. 

And your thyroid is particularly vulnerable to their effects.

Dr. Raymond Peat, PhD, says that the sudden increase of fragile and rancid polyunsaturated oils into our food supply after World War II has caused many changes in human health, particularly thyroid function and hormones: 

Their [polyunsaturated oils] best understood effect is their interference with the function of the thyroid gland. Unsaturated oils block thyroid hormone secretion, its movement in the circulatory system, and the response of tissues to the hormone. By 1950, then, it was established that unsaturated fats suppress the metabolic rate, apparently creating hypothyroidism. The more unsaturated the oils are, the more specifically they suppress tissue response to thyroid hormone, and transport of the hormone on the thyroid transport protein. And in 1980, experimenters demonstrated that young rats fed milk containing soy oil incorporated the oil directly into their brain cells, and had structurally abnormal brain cells as a result.
Click here to subscribe

4. Eat coconut oil

I’ve discussed the brain and mental health benefits of coconut oil before here

It can help reduce brain fog and enhance your cognitive performance. And it may be accomplishing this by supporting your thyroid. 

According to Dr. Raymond Peat, coconut oil is very beneficial to the brain and thyroid:

Coconut oil has a general pro-thyroid action by diluting and displacing anti-thyroid unsaturated oils. And brain tissue is very rich in complex forms of fats. An experiment in which pregnant mice were given diets containing either coconut oil or unsaturated oil showed that brain development was superior in the young mice whose mothers ate coconut oil. Because coconut oil supports thyroid function, and thyroid governs brain development, including myelination, the result might simply reflect the difference between normal and hypothyroid individuals.

And you don’t need to stick with coconut oil. Coconut milk, water and meat are other ways to get the benefits of coconut. 

 

5. Try Low-level Laser Therapy (LLLT)

Low-level laser therapy (LLLT) is probably the best cutting-edge way to support your thyroid. I wrote about it previously here.  

Using it on my thyroid has made a remarkable difference in my energy levels and mental clarity. And this is likely because of an increase in my thyroid hormones. 

Multiple studies show that LLLT can improve the production of thyroid hormones and improve thyroid function in patients with chronic autoimmune thyroid disease. Study participants were able to reduce the dosage of their thyroid medication (36, 37).  

A study from Brazil showed that LLLT not only reduced the need for thyroid medication in all patients, but 9 months later after the study concluded, it also showed that 47% of patients no longer required any thyroid medication at all.  Participants with Hashimoto’s thyroiditis also saw a reduction in their anti-thyroid antibodies by more than 39% (40). 

A Russian study also demonstrated a 97% success rate when treating women with subclinical hypothyroidism. Researchers concluded LLLT should be the “method of choice in the treatment of [subclinical hypothyroidism], especially in the elderly” (40). 

Animal research has found similar results in rats and rabbits (38, 39). 

I shine the Optimal 1000 Brain Photobiomodulation Therapy Light (Combo Red/NIR) device on my thyroid. It includes both red and infrared light. I’m convinced most people would benefit from it.

When I’m travelling, I take this smaller and more convenient device with me.

Infrared saunas are another excellent way to expose yourself to infrared light and support thyroid function. Check out my post about the benefits here

 

6. Get Enough Vitamin A and D

Fat soluble vitamins A and D are also critical for optimal thyroid and brain function.

Illustration of the sun with “Vitamin D” in the middle.

Vitamin D is necessary to help transport thyroid hormone into your cells and deficiency is quite common in people with thyroid problems. Vitamin D deficiency is also associated with thyroid disease and supplementation has been shown to benefit the thyroid. (22-24). 

I previously discussed the brain health benefits of vitamin D here.

You should test and monitor your Vitamin D levels regularly.

Vitamin A helps your body produce thyroid hormone and protects the thyroid gland from oxidative stress (which is higher in people with thyroid issues). Research also shows that vitamin A can reduce your risk of hypothyroidism (19-21). 

However, I personally don’t recommend you supplement with vitamin A. It’s better to get it from food. Pastured eggs, grass-fed liver and butter (or ghee if you can't tolerate butter) are ideal sources. 

Cod liver oil is another great option as it contains both vitamin A, vitamin D and omega-3 fatty acids all together. I take it every so often.

 

7. Get Enough Minerals

Your thyroid gland needs specific trace minerals to do its job properly. 

I take and recommend a multi-mineral supplement so that you have all the minerals you need to support brain and thyroid health. It includes a small amount of iodine, selenium, magnesium and zinc.

Iodine is the most important, as it’s one of the building blocks used by your thyroid to create hormones. 

However, I don’t recommend supplementing with large doses of iodine separately. Many functional medicine practitioners that I’ve learned from over the years have told me that high iodine intake through supplements can often do more harm than good. Too much supplemental iodine has been shown to cause further thyroid problems (66-68). 

Brazil nuts contain selenium, which can support your thyroid.

So I think the small amount in a multi-mineral is enough.

And getting some more iodine from whole foods, including seafood and sea vegetables, can also benefit you since they contain other nutrients that can support your thyroid.  

Selenium is another indispensable mineral for your thyroid and brain health.

It helps regulate and recycle your iodine stores, and selenium-based proteins help regulate thyroid hormone synthesis and metabolism.

Without it, you’ll likely experience low-thyroid symptoms.

Brazil nuts are the richest dietary source of selenium. 

Low levels of zinc can also lead to depleted thyroid hormones, and vice versa (34). This is just another reason to supplement with zinc.

As I’ve discussed before, a zinc deficiency can also contribute to stress and anxiety.

And although it isn't mentioned very often, magnesium is also critical for optimal thyroid function. The thyroid gland can't function properly without it (89).

I previously discussed how it can help a lot of people with depression and anxiety here

Click here to subscribe

8. Reduce Stress and Cortisol

High levels of physical and mental stress can be detrimental to your thyroid function. 

Your adrenal glands –  two walnut-shaped glands that sit atop the kidneys – secrete your stress stress hormones, such as cortisol, epinephrine and norepinephrine. 

Research shows that cortisol inhibits thyroid hormones from getting into your cells, and weakened adrenal glands can lead to hypothyroid symptoms over time (35).

That’s why it’s critical that you manage stress.

I highly recommend you try to do something every day to manage it. 

The most effective way to significantly and permanently reduce your stress and anxiety is neurofeedback. It’s advanced, guided meditation and I previously wrote about my experience with it here

Person meditating outside.

If you can’t access neurofeedback, taking up a daily meditation practice is an excellent idea. 

I’m a big fan of the Muse headband . It can guide your meditation. Similar to neurofeedback, it gives you real-time feedback while you meditate. I wrote an entire review about it here, and you can get it through the Muse website

I also find massage, acupuncture, heart-rate variability (HRV) training and an acupressure mat very helpful as well.

Lying on the acupressure mat while using my EmWave2 for just 10 minutes relaxes my entire body and mind. I do this at night before bed. 

Supplements that can help with stress include zinc, ashwagandha and phosphatidylserine, which have been shown to lower cortisol levels (87, 88). 

This anti-anxiety supplement also includes a number of natural compounds that have helped me manage my stress over the years.

Lastly, you should get enough sleep and don’t exercise too much. The stress caused by excessive exercise can wear you’re your body and contribute to thyroid problems. So make sure you get plenty of rest and recover between workout sessions.

 

9. Take Thyroid-Supporting Herbs

A number of different herbs can assist your thyroid gland. 

Ashwagandha is one of my favourites. Not only can it reduce stress and anxiety, but a number of studies show that it can boost thyroid hormones (25-29).

Bacopa is another adaptogen that has been shown to increase thyroid (T4) hormone levels by 42% (30). 

Forskolin stimulates the release of thyroid hormones (31). 

And one study found that ginseng increases and normalizes thyroid hormone levels (32). 

And last but not least, researchers say that rhodiola can “improve the quality of life of patients with short-term hypothyroidism” (33). 

Rhodiola also has a number of brain and mental health benefits. I explored them previously here

I’ve experimented with all of these herbs and they have improved my brain and mental health.

But it’s good to know they have some beneficial effects on my thyroid as well.

 

10. Eat “Head to Tail”

Whole plant foods tend to be much healthier when they’re left whole, as they tend to have various nutrients that work together synergistically. 

The same can be said about animal food. 

Muscle meats contain so much tryptophan and cysteine that a pure meat diet can suppress the thyroid. In poor countries, people have generally eaten all parts of the animal, rather than just the muscles – bones, cartilage, skin, organs, and other odd bits. About half of the protein in an animal is collagen, and collagen is deficient in tryptophan and cysteine. This means that, in the whole animal, the amino acid balance is similar to the adult’s requirements.
— Dr. Raymond Peat

In other words, muscle meat (chicken breasts, lean beef) shouldn’t be your only source of animal protein. Our ancestors didn’t eat this way, so neither should we.  

Your body and thyroid prefer and expect to receive a balance of amino acids from different parts of whole animals.

That’s why I recommend “head-to-tail eating” – consuming a wide variety of proteins from the entire animal. 

Along with muscle meat, you should regularly cook and eat organ meats such as liver and bone broth.

Jars of bone broth.

Bone broth contains collagen, gelatin and amino acids such as glycine and proline that help the body better metabolize muscle meat.

Organ meats such as liver have an abundance of beneficial nutrients that aren’t found in muscle meat alone. For example, it’s much higher in vitamin A, which is important for optimal thyroid health (19, 20). 

I previously discussed the benefits of liver in more depth here.

I personally don’t like the taste of liver and bone broth can be inconvenient to make all the time, so I often supplement with grass-fed beef liver capsules and drink high-quality pre-made bone broth.

I also take a Multi-Glandular For Men, which contains a number of different organ tissues. There is also one for women. 

But if you’re actually interested in learning about how to cook and incorporate more whole animal proteins into your diet, I recommend checking out the book Odd Bits: How to Cook the Rest of the Animal by Jennifer McLagan.

 

11. Limit Halogens

Your thyroid doesn’t know the difference between iodine, and other halogens such as bromine, fluorine, chlorine, and perchlorate, which are often found in tap water. 

So your thyroid soaks them up and uses them like iodine.

By occupying iodine receptors, they worsen iodine deficiency, inhibit the production of your thyroid hormones and contribute to thyroid dysfunction.

Studies show that chlorine interferes with proper conversion of thyroid hormone (50, 58-61). 

That’s why I recommend filtering your drinking and shower water. Brita filters aren't enough because they don’t remove fluoride. I use this water filter to make sure I’m drinking the purest water available. It filters everything out of the water. I also use this filter to remove chlorine from my shower water. 

The research shows that bromide in particular can cause a lot of problems. Bromide is found in pesticides, prescription medication, plastic products and personal care products. PBDE (bromide) fire retardants have been added to mattresses, carpeting, electronics, furniture and car interiors since the 1970s. 

Even small amounts of bromide can be problematic, depleting iodine and weakening the thyroid gland. Bromide levels are 50 times higher in thyroid cancer than normal thyroid tissue, and elevated levels of bromide have been linked to mental illness, including depression and schizophrenia (50-57). 

 

12. Avoid Environmental and Dietary Mycotoxins

Mycotoxins – toxic metabolites produced by mold – can also disrupt normal thyroid function.

Mycotoxins are released into the air in water-damaged buildings, and you may not realize it’s affecting your brain and thyroid health until you develop certain symptoms. And even then, people frequently won’t make the connection between the mold and their health. 

That’s what happened to me, and my hormonal health went downhill, along with my brain and mental health. Luckily I’ve recovered since then

Mycotoxins are known hormone disruptors that cause inflammation, and a couple of studies mention that there is an increased frequency of “thyroid, immune dysfunction and autoimmune conditions” in people exposed to water-damaged building (41, 42). 

Very moldy home and man trying to clean it.

And one study shows that mold exposure is correlated with hypothyroidism and Hashimoto’s thyroiditis (43). 

Kurt and Lee Ann Billings wrote the book Mold: The War Within after extensive personal bouts with toxic mold exposure. They write extensively about their experience and recovery and describe ongoing problems with thyroid dysfunction. 

After I moved out of the moldy home, I became extremely sensitive to any environmental mold and mycotoxins. 

I now use an air filter in my apartment. It removes any mold spores and smoke that may be in the air.

Low amounts of mycotoxins are often found in some seemingly healthy foods, such as tea, nuts, grains, coffee and chocolate. I recommend finding the freshest, highest-quality, organic versions of these foods.

Lastly, if exposed to mold or their toxins, you should supplement with activated charcoal or bentonite clay.

Activated charcoal and bentonite clay are potent natural treatments that can trap toxins and chemicals, allowing them to be flushed out of your body.

 

13. Avoid and Remove Other Environmental Toxins

Mold and other halogens aren’t the only endocrine disruptors in your environment that can affect your thyroid metabolism and function.

In the book Thyroid Mind Power, Dr. Karilee Shames reports that “the last 40 years have witnessed a massive increase in the amount of hormone-disrupting synthetic chemicals, finding their way into our air, food and water. The most sensitive and highly susceptible of human tissues turned out to be the thyroid gland.”

Here are some common ones:

Water bottle. The plastic in water bottles can disrupt the thyroid.
  • Bisphenol A – found in plastic bottles and containers. I recommend you only eat and drink out of glass, ceramic and stainless steel. Avoid storing any of your food in plastic too. BPA-free plastic isn’t much better for you and can still disrupt hormonal health.

  • Perfluorooctanoic acid (PFOA) – found in common household products including non-stick cookware and waterproof fabrics. Researchers have found that people with higher levels of PFOA (perfluorooctanoic acid) have a higher incidence of thyroid disease (44, 45).

  • Other pesticides and chemical additives – You should avoid processed food and eat organic as often as possible, wash all produce thoroughly to minimize your pesticide exposure, and find personal care products that don’t include toxic chemicals.

I also recommend increasing your levels of glutathione – your body’s main antioxidant and master detoxifier – to help your body combat the above substances from your body. I do this by supplementing with glutathione on regular basis. 

Or you could take NAC and Vitamin C to help your body produce more of its own glutathione. 

Researchers have found that a decrease in thyroid function could be reversed by NAC supplementation, which increased glutathione. This is because glutathione plays a key role in the production and conversion of your thyroid hormones (46-49). 

Epsom salt baths, infrared saunas, and turmeric can also help your body release and remove environmental toxins. 

 

Summary and Conclusion

With the right information, you can make simple choices to improve thyroid health.

Here's a summary of everything we've gone over:

Doctor holding a woman’s neck to monitor her thyroid.
  • Cut out gluten-containing grains (barley, wheat, rye, spelt)

  • Don't follow a long-term ketogenic low-carb diet and eat enough calories and healthy sources of carbohydrates. See my free food guide for plenty of options. And consider taking exogenous ketones to get the cognitive benefits of a ketogenic diet without actually having to follow the diet.

  • Avoid refined vegetable oils, including soybean, corn, safflower, sunflower, and canola

  • Eat coconut oil

  • Try low-level laser therapy (LLLT)

  • Supplement with Vitamin D, and make sure you get enough Vitamin A from egg yolks, grass-fed liver and ghee

  • Take a multimineral with iodine, selenium and zinc

  • Reduce stress with deep sleep, massage, acupuncture, meditation, neurofeedback, the Muse headband, an acupressure mat, the EmWave2, ashwagandha and phosphatidylserine

  • Take herbs such as bacopa, ginseng, forskolin and rhodiola

  • Eat beef liver and bone broth

  • Filter your drinking water with a filtration system to avoid fluoride, chlorine and other halogens

  • Avoid mold, mycotoxins and other environmental toxins, and protect yourself from them with an air filter, activated charcoal and glutathione

So with that, I want to leave you with a quote from a book I read recently by Sam Harris, called Free Will.

I think this quote is appropriate considering the wide variety of factors that underlie brain and mental health problems:

Becoming sensitive to the background causes of one’s thoughts and feelings can - paradoxically - allow for greater creative control over one’s life. It is one thing to bicker with your wife because you are in a bad mood; it is another to realize that your mood and behaviour have been caused by low blood sugar. This understanding reveals you to be a biochemical puppet, of course, but it also allows you to grab hold of one of your strings: A bite of food may be all your personality requires. Getting behind our conscious thoughts and feelings can allow us to steer a more intelligent course through our lives (while knowing, of course, that we are ultimately being steered).

So even though it seems like there are an overwhelming amount of “strings” to pull, realize that you don’t have to pull them all at once.

You just have to start with one, and go from there.

And then over time, you'll start to get a handle on all of them, and you'll heal.

 
Click here to subscribe

Live Optimally,

Jordan Fallis

Connect with me

References:

(1) http://www.ncbi.nlm.nih.gov/pubmed/11280546

(2) http://www.ncbi.nlm.nih.gov/pubmed/12217453

(3) http://www.ncbi.nlm.nih.gov/pubmed/11123714

(4) http://www.ncbi.nlm.nih.gov/pubmed/10529537

(5) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111403/

(6) http://www.eje-online.org/content/130/2/137.abstract

(7) http://www.ncbi.nlm.nih.gov/pubmed/15244201

(8) http://www.ncbi.nlm.nih.gov/pubmed/9872614

(9) http://www.ncbi.http://www.ncbi.nlm.nih.gov/pubmed/12919165lm.nih.gov/pubmed/12919165

(10) http://www.ncbi.nlm.nih.gov/pubmed/11768252

(11) http://www.ncbi.nlm.nih.gov/pubmed/12366374

(12) http://www.ncbi.nlm.nih.gov/pubmed/19014325

(13) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1808742/

(14) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC371281/

(15) http://www.ncbi.nlm.nih.gov/pubmed/6761185

(16) http://www.ncbi.nlm.nih.gov/pubmed/3740086

(17) http://ajcn.nutrition.org/content/35/1/24.full.pdf

(18) http://www.ncbi.nlm.nih.gov/pubmed/1249190

(19) http://www.ncbi.nlm.nih.gov/pubmed/6470830

(20) http://www.ncbi.nlm.nih.gov/pubmed/23378454

(21) http://ajcn.nutrition.org/content/34/8/1489.abstract

(22) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3921055/

(23) http://www.ncbi.nlm.nih.gov/pubmed/12919165

(24) http://www.ncbi.nlm.nih.gov/pubmed/10750047

(25) http://www.ncbi.nlm.nih.gov/pubmed/19789214

(26) http://www.ncbi.nlm.nih

(27) http://onlinelibrary.wiley.com/doi/10.1211/146080800128735782/abstract

(28) http://www.ncbi.nlm.nih.gov/pubmed/9811169

(29) http://www.ncbi.nlm.nih.gov/pubmed/10619390

(30) http://www.sciencedirect.com/science/article/pii/S037887410200048X

(31) http://www.ncbi.nlm.nih.gov/pubmed/6327383

(32) http://www.ncbi.nlm.nih.gov/pubmed/6327383

(33) http://www.ncbi.nlm.nih.gov/pubmed/20946017

(34) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746228/

(35) http://www.ncbi.nlm.nih.gov/pubmed/17002934

(36) http://www.ncbi.nlm.nih.gov/pubmed/20662037

(37) http://www.ncbi.nlm.nih.gov/pubmed/22718472

(38) http://www.ncbi.nlm.nih.gov/pubmed/25265487

(39) http://www.ncbi.nlm.nih.gov/pubmed/25975382

(40) http://valtsus.blogspohttp://va

(41) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654247/

(42) http://www.ncbi.nlm.nih.gov/pubmed/15143854

(43) http://www.ncbi.nlm.nih.gov/pubmed/430949

(44) http://www.ncbi.nlm.nih.gov/pubmed/24407430

(45) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866686/

(46) http://www.ncbi.nlm.nih.gov/pubmed/21540553?dopt=Abstract

(47)https://www.researchgate.net/publication/12044880_Effect_of_Glutathione_GSH_Depletion_on_the_Serum_Levels_of_Triiodothyronine_T_3_Thyroxine_T_4_and_T_3_T_4_Ratio_in_Allyl_AlcoholTreated_Male_Rats_and_Possible_Protection_With_Zinc

(48) http://www.ncbi.nlm.nih.gov/pubmed/7408784

(49) http://www.ncbi.nlm.nih.gov/pubmed/7052928

(50) http://www.ncbi.nlm.nih.gov/pubmed/8909694

(51) http://www.ncbi.nlm.nih.gov/pubmed/15255296

(52) http://www.ncbi.nlm.nih.gov/pubmed/10999431

(53) http://www.ncbi.nlm.nih.gov/pubmed/9542578

(54) http://www.ncbi.nlm.nih.gov/pubmed/9341949

(55) http://www.ncbi.nlm.nih.gov/pubmed/8909694

(56) http://www.ncbi.nlm.nih.gov/pubmed/6548284

(57) http://www.ncbi.nlm.nih.gov/pubmed/8909694

(58) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890436/

(59) http://www .ncbi.nlm.nih.gov/pubmed/1087230

(60) http://www.ncbi.nlm.nih.gov/pubmed/19318504

(61) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3956646/

(62) http://www.ncbi.nlm.nih.gov/pubmed/9140329

(63) http://www.ncbi.nlm.nih.gov/pubmed/21001996

(64) www.gulflink.osd.mil/library/randrep/pb_paper/mr1018.2chap10.html

(65) http://www.optimox.com/iodine-study-18

(66) http://www.ncbi.nlm.nih.gov/pubmed/7477223

(67) http://www.ncbi.nlm.nih.gov/pubmed/20517655?dopt=AbstractPlus

(68) http://www.eymj.org/Synapse/Data/PDFData/0069YMJ/ymj-44-227.pdf

(69) https://www.ncbi.nlm.nih.gov/pubmed/15213796

(70) http://www.drrichardhall.com/Articles/hashimoto.pdf

(71) http://www.ncbi.nlm.nih.gov/pubmed/11958781

(72) http://www.ncbi.nlm.nih.gov/pubmed/17141745

(73) http://bmcpsychiatry.biomedcentral.com/articles/10.1186/1471-244X-4-25

(74) http://cpementalhealth.biomedcentral.com/articles/10.1186/1745-0179-1-23

(75) http://www.ncbi.nlm.nih.gov/pubmed/19215985

(76) http://www.ccjm.org/indhttp://www.ccjm.org/index.php?id=107937&tx_ttnews[

(77) http://www.health.harvard.edu/diseases-and-conditions/thyroid-deficiency-and-mental-health

(78) http://www.ncbi.nlm.nih.gov/pubmed/20404728

(79) http://www.ncbi.nlm.nih.gov/pubmed/27268005

(80) http://www.ncbi.nlm.nih.gov/pubmed/24480318

(81) http://www.ncbi.nlm.nih.gov/pubmed/24480318

(82) http://www.eje-online.org/content/138/1/1.full.pdf

(83) http://www.ncbi.nlm.nih.gov/pubmed/24443228

(84) http://www.ncbi.nlm.nih.gov/pubmed/24345793

(85) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3013313/

(86) http://www.ncbi.nlm.nih.gov/pubmed/23380316

(87) http://www.ncbi.nlm.nih.gov/pubmed/23439798

(88) http://www.ncbi.nlm.nih.gov/pubmed/1325348

(89) http://www.ncbi.nlm.nih.gov/pubmed/6747732

Terms and Conditions

Privacy Policy

Affiliate Disclosure

Disclaimer